On generalized fractional integral operator associated with generalized Bessel-Maitland function

被引:1
|
作者
Ali, Rana Safdar [1 ]
Batool, Saba [1 ]
Mubeen, Shahid [2 ]
Ali, Asad [3 ]
Rahman, Gauhar [3 ]
Samraiz, Muhammad [2 ]
Nisar, Kottakkaran Sooppy [4 ]
Mohamed, Roshan Noor [5 ]
机构
[1] Univ Lahore, Dept Math, Lahore, Pakistan
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
[3] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan
[4] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[5] Taif Univ, Fac Dent, Dept Pediat Dent, POB 11099, At Taif 21944, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 7卷 / 02期
关键词
extended Bessel-Maitland function; integral transform; Riemann-Liouville fractional integral operator; MITTAG-LEFFLER FUNCTION;
D O I
10.3934/math.2022167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe generalized fractional integral operator and its inverse with generalized Bessel-Maitland function (BMF-V) as its kernel. We discuss its convergence, boundedness, its relation with other well known fractional operators (Saigo fractional integral operator , Riemann-Liouville fractional operator), and establish its integral transform. Moreover, we have given the relationship of BMF-V with Mittag-Leffler functions.
引用
收藏
页码:3027 / 3046
页数:20
相关论文
共 50 条