Geometrical measurements in three-dimensional quantum gravity

被引:30
|
作者
Barrett, JW [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
D O I
10.1142/S0217751X03017981
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A set of observables is described for the topological quantum field theory which describes quantum gravity in three space-time dimensions with positive signature and positive cosmological constant. The simplest examples measure the distances between points, giving spectra and probabilities which have a geometrical interpretation. The observables are related to the evaluation of relativistic spin networks by a Fourier transform.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 50 条
  • [21] Assessing geometrical errors of multi-axis machines by three-dimensional length measurements
    Florussen, GHJ
    Delbressine, FLM
    van de Molengraft, MJG
    Schellekens, PHJ
    MEASUREMENT, 2001, 30 (04) : 241 - 255
  • [22] Two geometrical invariants for three-dimensional systems
    Center for Applied Mathematics of Guangxi, Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, China
    不详
    不详
    Math Methods Appl Sci,
  • [23] Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
    Baoshun Ma
    Robert E. Harbaugh
    Madhavan L. Raghavan
    Annals of Biomedical Engineering, 2004, 32 : 264 - 273
  • [24] Three-dimensional geometrical characterization of cerebral aneurysms
    Ma, BS
    Harbaugh, RE
    Raghavan, ML
    ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (02) : 264 - 273
  • [25] Two geometrical invariants for three-dimensional systems
    Liu, Aimin
    Liu, Yongjian
    Lu, Xiaoting
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3383 - 3399
  • [26] Wedge Dislocations and Three-Dimensional Gravity
    Katanaev, M. O.
    Mannanov, I. G.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2012, 4 (01) : 5 - 19
  • [27] Solutions of deformed three-dimensional gravity
    Mignemi, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (04): : 799 - 810
  • [28] Wedge dislocations and three-dimensional gravity
    M. O. Katanaev
    I. G. Mannanov
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2012, 4 (1) : 5 - 19
  • [29] Geometric actions for three-dimensional gravity
    Barnich, G.
    Gonzalez, H. A.
    Salgado-Rebolledo, P.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (01)
  • [30] Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial
    Gukov, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (03) : 577 - 627