Texture Feature Extracting Method Based on Local Relative Phase Binary Pattern

被引:0
|
作者
Pan, Yue [1 ]
Liu, Li [1 ]
Yang, Longfei [1 ]
Wang, Yizheng [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
来源
PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT) | 2016年
关键词
Texture extraction; LRPBP; Relative phase; LBP; Gabor transform; CLASSIFICATION; WAVELET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a novel local relative phase binary pattern (LRPBP) method is proposed based on LBP and relative phase for extracting texture features. In LRPBP, an image will be firstly processed through Gabor transform. And then the relative phase information of the image is extracted in the complex transform domain of Gabor. Finally, the texture feature of the image is constructed via calculating LRPBP values, which borrows the idea from the traditional LBP method for the relative phase information. The experiments are conducted on two texture image sets and the results show the good performance of LRPBP method.
引用
收藏
页码:749 / 753
页数:5
相关论文
共 50 条
  • [21] Texture features based on an efficient local binary pattern descriptor
    Kaddar, Bachir
    Fizazi, Hadria
    Boudraa, Abdel-Ouahab
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 496 - 508
  • [22] Neutrosophic set based local binary pattern for texture classification
    Alpaslan, Nuh
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
  • [23] Feature Extraction Method for Digital Images Based on Intuitionistic Fuzzy Local Binary Pattern
    Ansari, Mohd Dilshad
    Ghrera, Satya Prakash
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2016), 2016, : 345 - 349
  • [24] EFFECTIVE FEATURE EXTRACTION METHOD FOR UNCONSTRAINED ENVIRONMENT: LOCAL BINARY PATTERN OR LOCAL TERNARY PATTERN
    Kumar, Muthusamy Rajeev
    Sundaram, Ramkumar
    Rengasamy, Mageswaran
    Balakrishnan, Ravichandran
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2024, 69 (04): : 443 - 448
  • [25] Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern
    Song Tiecheng
    Luo Lin
    Zhang Gang
    Luo Zhongtao
    Zhang Tianqi
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (06) : 1301 - 1308
  • [26] An improved local binary pattern for texture classification
    Dan, Zhiping
    Chen, Yanfei
    Yang, Zhi
    Wu, Guang
    OPTIK, 2014, 125 (20): : 6320 - 6324
  • [27] Microscopic Local Binary Pattern for Texture Classification
    He, Jiangping
    Song, Wei
    Ji, Hongwei
    Yang, Xin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (09) : 1587 - 1595
  • [28] Directional Local Binary Pattern for Texture Analysis
    Shabat, Abuobayda M.
    Tapamo, Jules-Raymond
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 226 - 233
  • [29] A Bayesian Local Binary Pattern Texture Descriptor
    He, Chu
    Ahonen, Timo
    Pietikainen, Matti
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 624 - 627
  • [30] An Enhanced Local Binary Pattern for Texture Classification
    Tao, Huawei
    Wang, Rugang
    Zhao, Li
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND OPTIMIZATION TECHNOLOGIES AND APPLICATIONS (MSOTA2016), 2016, 58 : 421 - 424