A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems

被引:9
|
作者
Yang, Jiming [1 ]
Xing, Xiaoqing [2 ]
机构
[1] Hunan Inst Engn, Coll Sci, Xiangtan 411104, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-grid; Nonlinear problems; Discontinuous Galerkin method; Convergence estimate; MIXED FINITE-ELEMENT; COMPRESSIBLE MISCIBLE DISPLACEMENT; INTERIOR PENALTY; ERROR ANALYSIS; DIFFUSION; APPROXIMATIONS; FLOW;
D O I
10.1016/j.amc.2018.09.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discontinuous Galerkin approximation for the space variables with the backward Euler time discretisation for a kind of parabolic problems with the nonlinear diffusion, convection and source terms is investigated. To solve the strongly nonlinear algebra system, a two-grid method is proposed. With this algorithm, solving a nonlinear system on the fine discontinuous finite element space is reduced into solving a nonlinear problem on a coarse gird of size and solving a linear problem on a fine grid of size. Convergence estimates in H-1-norm are obtained. The numerical experiments are provided to confirm our theoretical analysis. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:96 / 108
页数:13
相关论文
共 50 条
  • [21] A TWO-GRID FINITE VOLUME ELEMENT METHOD FOR A NONLINEAR PARABOLIC PROBLEM
    Chen, Chuanjun
    Liu, Wei
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 197 - 210
  • [22] THE DISCONTINUOUS GALERKIN METHOD FOR SEMILINEAR PARABOLIC PROBLEMS
    ESTEP, D
    LARSSON, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (01): : 35 - 54
  • [23] Error analysis of two-grid virtual element method for nonlinear parabolic problems on general polygonal meshes
    Wu, Xiaohui
    Chen, Yanping
    Wang, Yang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 459
  • [24] A discontinuous Galerkin method applied to nonlinear parabolic equations
    Rivière, B
    Wheeler, MF
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 231 - 244
  • [25] A local discontinuous Galerkin method for nonlinear parabolic SPDEs
    Li, Yunzhang
    Shu, Chi-Wang
    Tang, Shanjian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 : S187 - S223
  • [26] TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD
    ERIKSSON, K
    JOHNSON, C
    THOMEE, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04): : 611 - 643
  • [27] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhi-juan ZHANG
    Xi-jun YU
    Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 453 - 466
  • [28] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhang, Zhi-juan
    Yu, Xi-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 453 - 466
  • [29] Local discontinuous Galerkin method for parabolic interface problems
    Zhi-juan Zhang
    Xi-jun Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 453 - 466
  • [30] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402