Bosonization study of a generalized statistics model with four Fermi points

被引:4
|
作者
Aditya, Sreemayee [1 ]
Sen, Diptiman [1 ,2 ]
机构
[1] Indian Inst Sci, Ctr High Energy Phys, Bengaluru 560012, India
[2] Indian Inst Sci, Dept Phys, Bengaluru 560012, India
关键词
INTERACTING BOSE-GAS; FRACTIONAL-STATISTICS; IDEAL-GAS;
D O I
10.1103/PhysRevB.103.235162
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a one-dimensional lattice model of generalized statistics in which particles have next-nearest-neighbor hopping between sites which depends on the occupation number at the intermediate site and a statistical parameter phi. The model breaks parity and time-reversal symmetries and has four-fermion interactions if phi = 0. We first analyze the model using mean field theory and find that there are four Fermi points whose locations depend on phi and the filling eta. We then study the modes near the Fermi points using the technique of bosonization. Based on the quadratic terms in the bosonized Hamiltonian, we find that the low-energy modes form two decoupled Tomonaga-Luttinger liquids with different values of the Luttinger parameters which depend on phi and eta; further, the right- and left-moving modes of each system have different velocities. A study of the scaling dimensions of the cosine terms in the Hamiltonian indicates that the terms appearing in one of the Tomonaga-Luttinger liquids will flow under the renormalization group and the system may reach a nontrivial fixed point in the long distance limit. We examine the scaling dimensions of various charge density and superconducting order parameters to find which of them is the most relevant for different values of phi and eta. Finally, we look at two-particle bound states that appear in this system and discuss their possible relevance to the properties of the system in the thermodynamic limit. Our work shows that the low-energy properties of this model of generalized statistics have a rich structure as a function of phi and eta.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] GENERALIZED EXPONENTIAL MARKOV AND MODEL OUTPUT STATISTICS - A COMPARATIVE VERIFICATION
    PERRONE, TJ
    MILLER, RG
    MONTHLY WEATHER REVIEW, 1985, 113 (09) : 1524 - 1541
  • [43] Generalized four-flux radiative transfer model
    Vargas, WE
    APPLIED OPTICS, 1998, 37 (13): : 2615 - 2623
  • [44] A two-leg quantum Ising ladder: a bosonization study of the ANNNI model
    Allen, D
    Azaria, P
    Lecheminant, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (21): : L305 - L310
  • [45] Fixed points in perturbative non-Abelian four-Fermi theory in (3+1)D
    Alves, Van Sergio
    Nascimento, Leonardo
    Pena, Francisco
    PHYSICS LETTERS A, 2013, 377 (43) : 3084 - 3092
  • [46] Dynamics and statistics of the Fermi-Pasta-Ulam β-model with different ranges of particle interactions
    Christodoulidi, Helen
    Bountis, Tassos
    Tsallis, Constantino
    Drossos, Lambros
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [47] Spin gap for multichain lattice and quantum spin model linearized about Fermi points
    Zvyagin, AA
    JETP LETTERS, 1996, 63 (03) : 204 - 208
  • [48] Non-Fermi liquid fixed points of a two-channel Anderson model
    Ferreira, JVB
    de Oliveira, LN
    Cox, DL
    Líbero, VL
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 : 196 - 198
  • [49] Physics of the gauged four-Fermi model in 1+1 dimensions
    Aoki, K
    Ito, K
    PHYSICAL REVIEW D, 1999, 60 (09)
  • [50] Renormalization group flows in a Lifshitz-like four-Fermi model
    Dhar, Avinash
    Mandal, Gautam
    Nag, Partha
    PHYSICAL REVIEW D, 2010, 81 (08):