High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds

被引:217
|
作者
Ding, Guangqian
Gao, Guoying [1 ]
Yao, Kailun
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; SNS; PERFORMANCE; POWER; GESE;
D O I
10.1038/srep09567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS, GeSe, SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] BOND ORBITAL MODEL FOR IV-VI COMPOUNDS
    NAKANISHI, A
    MATSUBARA, T
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 1 - 14
  • [22] HETEROSTRUCTURES OF DILUTE MAGNETIC IV-VI COMPOUNDS
    PASCHER, H
    GEIST, F
    KRIECHBAUM, M
    FRANCK, N
    PHYSICA SCRIPTA, 1992, T45 : 214 - 218
  • [23] IV-VI semiconductor materials, devices, and applications
    McCann, PJ
    STATE-OF-THE-ART PROGRAM ON COMPOUND SEMICONDUCTORS XL (SOTAPOCS XL) AND NARROW BANDGAP OPTOELECTRONIC MATERIALS AND DEVICES II, 2004, 2004 (02): : 218 - 233
  • [24] Melt spinning preparation of bismuth telluride and partially alloying with IV-VI compounds for thermoelectric application
    Boettner, Harald
    Ebling, Dirk
    Jacquot, Alexandre
    Kuehn, Uta
    Schmiidt, Juergen
    THERMOELECTRIC POWER GENERATION, 2008, 1044 : 115 - +
  • [25] Thermoelectric studies of IV-VI semiconductors for renewable energy resources
    Khan, Amir Abdullah
    Khan, Imad
    Ahmad, Iftikhar
    Ali, Zahid
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 48 : 85 - 94
  • [26] BAND EDGE STRUCTURE OF FERROELECTRIC IV-VI COMPOUNDS)
    BAUER, G
    JANTSCH, W
    BANGERT, E
    FESTKORPERPROBLEME-ADVANCES IN SOLID STATE PHYICS, 1983, 23 : 27 - 48
  • [27] DIELECTRIC-CONSTANT OF CUBIC IV-VI COMPOUNDS
    LITTLEWOOD, PB
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (21): : 4459 - 4468
  • [28] Facility for growing epitaxial films of IV-VI compounds
    Levchenko, VI
    Postnova, LI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1995, 38 (06) : 794 - 796
  • [29] HIGH PRESSURE STRUCTURES OF GROUP V ELEMENTS AND GROUP IV-VI COMPOUNDS
    Maclean, J.
    Hatton, P. D.
    Crain, J.
    Harris, K. D. M.
    Kariuki, B. M.
    Wu, F.
    Cemik, R. J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C529 - C529
  • [30] Nature of the defect levels in IV-VI semiconductor compounds
    Volkov, B. A.
    Shapovalov, V. V.
    Physics of the Solid State, 1995, 37 (11):