Deep representation features from DreamDIAXMBD improve the analysis of data-independent acquisition proteomics

被引:12
|
作者
Gao, Mingxuan [1 ,2 ]
Yang, Wenxian [3 ]
Li, Chenxin [1 ]
Chang, Yuqing [1 ]
Liu, Yachen [1 ,2 ]
He, Qingzu [2 ,4 ]
Zhong, Chuan-Qi [5 ]
Shuai, Jianwei [2 ,4 ]
Yu, Rongshan [1 ,2 ,3 ]
Han, Jiahuai [2 ,5 ,6 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[3] Aginome Sci, Xiamen, Peoples R China
[4] Xiamen Univ, Coll Phys Sci & Technol, Xiamen, Peoples R China
[5] Xiamen Univ, Sch Life Sci, State Key Lab Cellular Stress Biol, Xiamen, Peoples R China
[6] Xiamen Univ, Sch Med, Res Unit Cellular Stress CAMS, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY; PEPTIDE IDENTIFICATION; STATISTICAL-MODEL; TARGETED ANALYSIS; MS/MS; REPRODUCIBILITY; VALIDATION; PRECURSOR; PROTEINS; STRATEGY;
D O I
10.1038/s42003-021-02726-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We developed DreamDIAXMBD (denoted as DreamDIA), a software suite based on a deep representation model for data-independent acquisition (DIA) data analysis. DreamDIA adopts a data-driven strategy to capture comprehensive information from elution patterns of peptides in DIA data and achieves considerable improvements on both identification and quantification performance compared with other state-of-the-art methods such as OpenSWATH, Skyline and DIA-NN. Specifically, in contrast to existing methods which use only 6 to 10 selected fragment ions from spectral libraries, DreamDIA extracts additional features from hundreds of theoretical elution profiles originated from different ions of each precursor using a deep representation network. To achieve higher coverage of target peptides without sacrificing specificity, the extracted features are further processed by nonlinear discriminative models under the framework of positive-unlabeled learning with decoy peptides as affirmative negative controls. DreamDIA is publicly available at https://github.com/xmuyulab/ DreamDIA-XMBD for high coverage and accuracy DIA data analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework
    Fahrner, Matthias
    Foll, Melanie Christine
    Gruning, Bjorn Andreas
    Bernt, Matthias
    Rost, Hannes
    Schilling, Oliver
    GIGASCIENCE, 2022, 11
  • [22] Data-independent acquisition in metaproteomics
    Wu, Enhui
    Xu, Guanyang
    Xie, Dong
    Qiao, Liang
    EXPERT REVIEW OF PROTEOMICS, 2024, 21 (7-8) : 271 - 280
  • [23] obaDIA: one-step biological analysis pipeline for data-independent acquisition and other quantitative proteomics data
    Yan, Jun
    Zhai, Hongning
    Zhu, Ling
    Sa, Sasha
    Ding, Xiaojun
    BIOINFORMATICS, 2021, 37 (14) : 2066 - 2067
  • [24] Recent advances of data-independent acquisition mass spectrometry-based proteomics
    Guo, Tiannan
    Aebersold, Ruedi
    PROTEOMICS, 2023, 23 (7-8)
  • [25] DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics
    Tsou, Chih-Chiang
    Avtonomov, Dmitry
    Larsen, Brett
    Tucholska, Monika
    Choi, Hyungwon
    Gingras, Anne-Claude
    Nesvizhskii, Alexey I.
    NATURE METHODS, 2015, 12 (03) : 258 - +
  • [26] Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort
    Ward, Bradley
    Ruys, Sebastien Pyr Dit
    Balligand, Jean-Luc
    Belkhir, Leila
    Cani, Patrice D.
    Collet, Jean-Francois
    De Greef, Julien
    Dewulf, Joseph P.
    Gatto, Laurent
    Haufroid, Vincent
    Jodogne, Sebastien
    Kabamba, Benoit
    Lingurski, Maxime
    Yombi, Jean Cyr
    Vertommen, Didier
    Elens, Laure
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (09) : 3806 - 3822
  • [27] DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics
    Tsou C.-C.
    Avtonomov D.
    Larsen B.
    Tucholska M.
    Choi H.
    Gingras A.-C.
    Nesvizhskii A.I.
    Nature Methods, 2015, 12 (3) : 258 - 264
  • [28] Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics
    Distler U.
    Kuharev J.
    Navarro P.
    Levin Y.
    Schild H.
    Tenzer S.
    Nature Methods, 2014, 11 (2) : 167 - 170
  • [29] Data-independent acquisition proteomics methods for analyzing post-translational modifications
    Yang, Yi
    Qiao, Liang
    PROTEOMICS, 2023, 23 (7-8)
  • [30] Urinary proteome profiling for children with autism using data-independent acquisition proteomics
    Meng, Wenshu
    Huan, Yuhang
    Gao, Youhe
    TRANSLATIONAL PEDIATRICS, 2021, 10 (07) : 1765 - +