Lumps and rogue waves on the periodic backgrounds for a (2+1)-dimensional nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain

被引:2
|
作者
Du, Xia-Xia [1 ,2 ]
Tian, Bo [1 ,2 ]
Qu, Qi-Xing [3 ]
Zhang, Chen-Rong [1 ,2 ]
Chen, Su-Su [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Univ Int Business & Econ, Sch Informat, Beijing 100029, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 22期
基金
中国国家自然科学基金;
关键词
Heisenberg ferromagnetic spin chain; (2+1)-dimensional nonlinear Schrodinger equation; lump-periodic waves; rogue-periodic waves; Lie symmetry transformations; SOLITON SOLUTIONS; INTEGRABLE MODEL; INSTABILITY;
D O I
10.1142/S0217984921503218
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin excitations for the magnetic materials are used in the nonlinear signal processing devices and microwave communication systems. Under consideration in this paper is a (2 + 1)-dimensional nonlinear Schrodinger (NLS) equation which describes the spin dynamics for a Heisenberg ferromagnetic spin chain. Through a reduced transformation, we convert such an equation into the (1 + 1)-dimensional focusing NLS equation. Via the rogue-periodic solutions associated with two types of the Lie symmetry transformations of the NLS equation, we present the lump- and rogue-periodic solutions. Besides, the lump and mixed lump-soliton solutions are deduced. We graphically investigate the lump- and rogue-periodic waves and find that the amplitudes of the lumps and rogue waves are negatively related to vertical bar A vertical bar and vertical bar gamma vertical bar; the distances between two valleys of the lumps and widths of the rogue waves are affected by J and J(1), where A is the uniaxial crystal field anisotropy parameter, J and J(1) are related to the bilinear exchange interaction, gamma is the lattice parameter.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Rogue Waves in the (2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential
    刘芸恺
    李彪
    Chinese Physics Letters, 2017, (01) : 11 - 14
  • [32] Breather-type solutions and rogue waves to a generalised (2+1)-dimensional nonlinear Schrodinger equation
    Cheng, Li
    Zhang, Yi
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (01):
  • [33] Rogue Waves in the (2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential
    刘芸恺
    李彪
    Chinese Physics Letters, 2017, 34 (01) : 11 - 14
  • [34] Excitation of optical rogue waves to a (2+1)-dimensional nonlinear Schrodinger equation in nonlocal optical fibers
    Li, Bang-Qing
    Ma, Yu-Lan
    OPTIK, 2018, 174 : 178 - 184
  • [35] Rogue Waves in the (2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential
    Liu, Yun-Kai
    Li, Biao
    CHINESE PHYSICS LETTERS, 2017, 34 (01)
  • [36] Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrodinger equation
    Wen, Li-Li
    Zhang, Hai-Qiang
    NONLINEAR DYNAMICS, 2016, 86 (02) : 877 - 889
  • [37] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [38] Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain
    Wen-Rong Sun
    Bo Tian
    Hui-Ling Zhen
    Ya Sun
    Nonlinear Dynamics, 2015, 81 : 725 - 732
  • [39] Inelastic dromions, rogue waves and lumps of (2+1) dimensional long dispersive wave equation
    Radha, R.
    Kumar, C. Senthil
    Saranya, R.
    WAVE MOTION, 2019, 85 : 114 - 124
  • [40] Magnetic breathers and chaotic wave fields for a higher-order (2+1)-dimensional nonlinear Schrodinger-type equation in a Heisenberg ferromagnetic spin chain
    Yin, Hui-Min
    Tian, Bo
    Zhao, Xin-Chao
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 495