CT-based radiomics and machine learning for the prediction of myocardial ischemia: Toward increasing quantification

被引:6
|
作者
Lin, Andrew [1 ]
Dey, Damini [1 ]
机构
[1] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, 116 N Robertson Blvd, Los Angeles, CA 90048 USA
关键词
COMPUTED-TOMOGRAPHY; ANGIOGRAPHY; PERFUSION;
D O I
10.1007/s12350-020-02261-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:275 / 277
页数:3
相关论文
共 50 条
  • [41] Prediction of the activity of Crohn's disease based on CT radiomics combined with machine learning models
    Li, Tingting
    Liu, Yu
    Guo, Jiuhong
    Wang, Yuanjun
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (06) : 1155 - 1168
  • [42] The importance of planning CT-based imaging features for machine learning-based prediction of pain response
    Llorian-Salvador, Oscar
    Akhgar, Joachim
    Pigorsch, Steffi
    Borm, Kai
    Muench, Stefan
    Bernhardt, Denise
    Rost, Burkhard
    Andrade-Navarro, Miguel A.
    Combs, Stephanie E.
    Peeken, Jan C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] The importance of planning CT-based imaging features for machine learning-based prediction of pain response
    Óscar Llorián-Salvador
    Joachim Akhgar
    Steffi Pigorsch
    Kai Borm
    Stefan Münch
    Denise Bernhardt
    Burkhard Rost
    Miguel A. Andrade-Navarro
    Stephanie E. Combs
    Jan C. Peeken
    Scientific Reports, 13
  • [44] Graph Theory-Based Radiomics Features: Application of Tumor Network Structures On CT-Based Radiomics for Prognostic Prediction
    Umeda, M.
    Kadoya, N.
    Tanaka, S.
    Tanabe, S.
    Sugai, Y.
    Ishida, T.
    Ohashi, H.
    Dobashi, S.
    Takeda, K.
    Jingu, K.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [45] Application of CT-Based Radiomics in Discriminating Pancreatic Cystadenomas From Pancreatic Neuroendocrine Tumors Using Machine Learning Methods
    Han, Xuejiao
    Yang, Jing
    Luo, Jingwen
    Chen, Pengan
    Zhang, Zilong
    Alu, Aqu
    Xiao, Yinan
    Ma, Xuelei
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [46] CT-Based Radiomics Analysis of Different Machine Learning Models for Discriminating the Risk Stratification of Pheochromocytoma and Paraganglioma: A Multicenter Study
    Zhou, Yongjie
    Zhan, Yuan
    Zhao, Jinhong
    Zhong, Linhua
    Tan, Yongming
    Zeng, Wei
    Zeng, Qiao
    Gong, Mingxian
    Li, Aihua
    Gong, Lianggeng
    Liu, Lan
    ACADEMIC RADIOLOGY, 2024, 31 (07) : 2859 - 2871
  • [47] CT-based conventional radiomics and quantification of intratumoral heterogeneity for predicting benign and malignant renal lesions
    Yu, Shuanbao
    Yang, Yang
    Wang, Zeyuan
    Zheng, Haoke
    Cui, Jinshan
    Zhan, Yonghao
    Liu, Junxiao
    Li, Peng
    Fan, Yafeng
    Jia, Wendong
    Wang, Meng
    Chen, Bo
    Tao, Jin
    Li, Yuhong
    Zhang, Xuepei
    CANCER IMAGING, 2024, 24 (01)
  • [48] CT-based radiomics for prediction of PD-L1 expression in urothelial carcinoma
    Ku, J. Y.
    Seo, Y. J.
    Kim, K. H.
    Kim, S. D.
    Hwang, E. C.
    Ha, H. K.
    EUROPEAN UROLOGY, 2023, 83 : S849 - S850
  • [49] A CT-based radiomics nomogram for the preoperative prediction of perineural invasion in pancreatic ductal adenocarcinoma
    Deng, Yan
    Yu, Haopeng
    Duan, Xiuping
    Liu, Li
    Huang, Zixing
    Song, Bin
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [50] CT-based radiomics for outcome prediction in oropharyngeal cancer patients treated with curative RT
    Volpe, S.
    Gaeta, A.
    Colombo, F.
    Zaffaroni, M.
    Vincini, M. G.
    Pepa, M.
    Isaksson, L. J.
    Turturici, I.
    Casbarra, A.
    Marvaso, G.
    Ferrari, A. M.
    Cammarata, G.
    Santamaria, R.
    Raimondi, S.
    Botta, F.
    Ansarin, M.
    Cremonesi, M.
    Orecchia, R.
    Alterio, D.
    Jereczek-Fossa, B. A.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1886 - S1887