Comment on 'Wigner equation of motion for time-dependent potentials'

被引:0
|
作者
Besieris, IM [1 ]
Davis, BA [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
关键词
D O I
10.1080/0950034021000039653
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A correction is pointed out to a statement made by Galleani and Cohen (2002, J. mod. Optics , 49 , 561) regarding the impossibility of deriving an equation of evolution for the Wigner function corresponding to the Schrodinger equation with a time-dependent potential.
引用
收藏
页码:2271 / 2273
页数:3
相关论文
共 50 条
  • [21] Comment on "Solution of the Schrodinger equation for the time-dependent linear potential"
    Bekkar, H
    Benamira, F
    Maamache, M
    PHYSICAL REVIEW A, 2003, 68 (01):
  • [22] The heat equation and reflected Brownian motion in time-dependent domains
    Burdzy, K
    Chen, ZQ
    Sylvester, J
    ANNALS OF PROBABILITY, 2004, 32 (1B): : 775 - 804
  • [23] INVARIANTS OF PARTICLE MOTION IN ONE-DIMENSIONAL TIME-DEPENDENT POTENTIALS
    GIACOMINI, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17): : L865 - L869
  • [24] Numerical time-dependent solutions of the Schrodinger equation with piecewise continuous potentials
    van Dijk, Wytse
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [25] Efficient multiscale methods for the semiclassical Schrodinger equation with time-dependent potentials
    Chen, Jingrun
    Li, Sijing
    Zhang, Zhiwen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [26] Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials
    Chin, SA
    Chen, CR
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04): : 1409 - 1415
  • [27] Numerical solutions of the Schrodinger equation with source terms or time-dependent potentials
    van Dijk, W.
    Toyama, F. M.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [28] Stability estimate for the relativistic Schrodinger equation with time-dependent vector potentials
    Salazar, Ricardo
    INVERSE PROBLEMS, 2014, 30 (10)
  • [29] Time-dependent Bell inequalities in a Wigner form
    Nikitin, N. V.
    Sotnikov, V. P.
    Toms, K. S.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2014, 69 (06) : 480 - 487
  • [30] Time-dependent Bell inequalities in a Wigner form
    N. V. Nikitin
    V. P. Sotnikov
    K. S. Toms
    Moscow University Physics Bulletin, 2014, 69 : 480 - 487