Multi-source unsupervised domain adaptation for object detection

被引:32
|
作者
Zhang, Dan [1 ]
Ye, Mao [1 ]
Liu, Yiguang [2 ]
Xiong, Lin [1 ]
Zhou, Lihua [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Sichuan Univ, Sch Comp Sci, Vis & Image Proc Lab, Chengdu 610065, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multi-source object detection; Unsupervised domain adaptation; Transferability; Feature fusion;
D O I
10.1016/j.inffus.2021.09.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation for object detection has been extensively studied in recent years. Most existing approaches focus on single-source unsupervised domain adaptive object detection. However, a more practical scenario is that the labeled source data is collected from multiple domains with different feature distributions. The conventional approaches do not work very well since multiple domain gaps exist. We propose a Multi-source domain Knowledge Transfer (MKT) method to handle this situation. First, the low-level features from multiple domains are aligned by learning a shallow feature extraction network. Then, the high-level features from each pair of source and target domains are aligned by the followed multi-branch network. After that, we perform two parts of information fusion: (1) We train a detection network shared by all branches based on the transferability of each source sample feature. The transferability of a source sample feature means the indistinguishable degree to the target domain sample features. (2) For using our model, the target sample features output by the multi-branch network are fused based on the average transferability of each domain. Moreover, we leverage both image-level and instance-level attention to promote positive cross-domain transfer and suppress negative transfer. Our main contributions are the two-stage feature alignments and information fusion. Extensive experimental results on various transfer scenarios show that our method achieves the state-of-the-art performance.
引用
收藏
页码:138 / 148
页数:11
相关论文
共 50 条
  • [31] Unsupervised domain adaptation for multispectral object detection
    Jang, Hyunsung
    Lee, Minseok
    Kim, Jaeyeob
    Ha, Namkoo
    Sohn, Kwanghoon
    AUTOMATIC TARGET RECOGNITION XXXIII, 2023, 12521
  • [32] Building damage detection based on multi-source adversarial domain adaptation
    Wang, Xiang
    Li, Yundong
    Lin, Chen
    Liu, Yi
    Geng, Shuo
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [33] A weighted multi-source domain adaptation approach for surface defect detection
    Hu, Bing
    Wang, Jianhui
    IET IMAGE PROCESSING, 2022, 16 (08) : 2210 - 2218
  • [34] Unsupervised Multi-camera Domain Adaptation for Object Detection in Cultural Sites
    Pasqualino, Giovanni
    Furnari, Antonino
    Farinella, Giovanni Maria
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 713 - 724
  • [35] Multi-source multi-modal domain adaptation
    Zhao, Sicheng
    Jiang, Jing
    Tang, Wenbo
    Zhu, Jiankun
    Chen, Hui
    Xu, Pengfei
    Schuller, Bjorn W.
    Tao, Jianhua
    Yao, Hongxun
    Ding, Guiguang
    INFORMATION FUSION, 2025, 117
  • [36] Wasserstein Barycenter for Multi-Source Domain Adaptation
    Montesuma, Eduardo Fernandes
    Mboula, Fred Maurice Ngole
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16780 - 16788
  • [37] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [38] Multi-source Domain Adaptation for Semantic Segmentation
    Zhao, Sicheng
    Li, Bo
    Yue, Xiangyu
    Gu, Yang
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [40] Multi-Source Domain Adaptation: A Causal View
    Zhang, Kun
    Gong, Mingming
    Schoelkopf, Bernhard
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3150 - 3157