Properties of a class of perturbed Toeplitz periodic tridiagonal matrices

被引:10
|
作者
Fu, Yaru [1 ,2 ]
Jiang, Xiaoyu [1 ,3 ]
Jiang, Zhaolin [1 ]
Jhang, Seongtae [2 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276000, Shandong, Peoples R China
[2] Univ Suwon, Coll Informat Technol, Hwaseong Si 445743, South Korea
[3] Linyi Univ, Sch Informat Sci & Technol, Linyi 276000, Shandong, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 03期
基金
中国国家自然科学基金;
关键词
Perturbed Toeplitz periodic tridiagonal matrix; Determinant; Inverse; Eigenvalue; Eigenvector; ALGORITHM; INVERSES;
D O I
10.1007/s40314-020-01171-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for a class of perturbed Toeplitz periodic tridiagonal (PTPT) matrices, some properties, including the determinant, the inverse matrix, the eigenvalues and the eigenvectors, are studied in detail. Specifically, the determinant of the PTPT matrix can be explicitly expressed using the well-known Fibonacci numbers; the inverse of the PTPT matrix can also be explicitly expressed using the Lucas number and only four elements in the PTPT matrix. Eigenvalues and eigenvectors can be obtained under certain conditions. In addition, some algorithms are presented based on these theoretical results. Comparison of our new algorithms and some recent works is given. Numerical results confirm our new theoretical results and show that the new algorithms not only can obtain accurate results but also have much better computing efficiency than some existing algorithms studied recently.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Convergence of GMRES for tridiagonal Toeplitz matrices
    Liesen, J
    Strakos, Z
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 233 - 251
  • [22] Fine Spectra of Tridiagonal Toeplitz Matrices
    H. Bilgiç
    M. Altun
    Ukrainian Mathematical Journal, 2019, 71 : 853 - 868
  • [23] CLASS OF TRIDIAGONAL MATRICES
    COLLOMBA.G
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1972, 6 (NR2): : 77 - 79
  • [24] Eigenvalues of tridiagonal pseudo-Toeplitz matrices
    Kulkarni, D
    Schmidt, D
    Tsui, SK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 297 (1-3) : 63 - 80
  • [25] SHELL EXTREMAL EIGENVALUES OF TRIDIAGONAL TOEPLITZ MATRICES
    Chorianopoulos, Christos
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 572 - 590
  • [26] LCD codes from tridiagonal Toeplitz matrices
    Shi, Minjia
    Ozbudak, Ferruh
    Xu, Li
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 75
  • [27] Characterizations and accurate computations for tridiagonal Toeplitz matrices
    Delgado, Jorge
    Orera, Hector
    Pena, J. M.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4508 - 4527
  • [28] The envelope of tridiagonal Toeplitz matrices and block-shift matrices
    Aretaki, Aik.
    Psarrakos, P.
    Tsatsomeros, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 60 - 85
  • [29] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    C. Bruni
    S. Vergari
    CALCOLO, 2003, 40 : 149 - 161
  • [30] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    Bruni, C
    Vergari, S
    CALCOLO, 2003, 40 (03) : 149 - 161