Normalizing variables with too-frequent values using a Kolmogorov-Smirnov test: A practical approach

被引:24
|
作者
Drezner, Zvi [1 ]
Turel, Ofir [1 ]
机构
[1] Calif State Univ Fullerton, Steven G Mihaylo Coll Business & Econ, Fullerton, CA 92834 USA
关键词
Normal distribution; Normalizing data; Kolmogorov-Smirnov; Too-frequent data; MULTIVARIATE NORMALITY;
D O I
10.1016/j.cie.2011.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many quantitative applications in business operations, environmental engineering, and production assume sufficient normality of data, which is often, demonstrated using tests of normality, such as the Kolmogorov deemed Smirnov test. A practical problem arises when a high proportion of a too-frequent value exists in data, in which case transformation to normality that passes tests for normality may be impossible. Analysts and researchers are therefore often concerned with the question: should we bother transforming the variable to normality? Or should we revert to other approaches not requiring a normal distribution? In this study, we find the critical number of the frequency of a single value for which there is no feasible transformation to normality within a given a of the Kolmogorov-Smirnov test. The resultant decision table can guide the effort of analysts and researchers. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1240 / 1244
页数:5
相关论文
共 38 条
  • [31] Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic. Part II: Experiment and application
    Zhan, Yimin
    Mechefske, Chris K.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (05) : 1983 - 2011
  • [32] Detection of Spoofing Attacks on Global Navigation Satellite Systems Using Kolmogorov-Smirnov Test-Based Signal Quality Monitoring Method
    Zhou, Wenlong
    Lv, Zhiwei
    Li, Guangyun
    Jiao, Bo
    Wu, Wenbo
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 10474 - 10490
  • [33] Optimal approach for wind resource assessment using Kolmogorov-Smirnov statistic: A case study for large-scale wind farm in Pakistan
    Saeed, Muhammad Abid
    Ahmed, Zahoor
    Zhang, Weidong
    RENEWABLE ENERGY, 2021, 168 (168) : 1229 - 1248
  • [34] A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test
    Rajan, Jeny
    den Dekker, Arnold J.
    Sijbers, Jan
    SIGNAL PROCESSING, 2014, 103 : 16 - 23
  • [35] Statistical analysis of seismic b-value using non-parametric Kolmogorov-Smirnov test and probabilistic seismic hazard parametrization for Nepal and its surrounding regions
    Sharma, Vickey
    Biswas, Rajib
    NATURAL HAZARDS, 2024, 120 (08) : 7499 - 7526
  • [36] A new approach to recognizing the correct pattern of cross-peaks from a noisy 2D asynchronous spectrum by detecting intrinsic symmetry via the Kolmogorov-Smirnov test
    Xie, Linchen
    Guo, Ran
    Yang, Limin
    Ozaki, Yukihiro
    Noda, Isao
    Xu, Yizhuang
    Huang, Kun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (18) : 12863 - 12871
  • [37] Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic - Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis
    Zhan, Yimin
    Mechefske, Chris K.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (05) : 1953 - 1982
  • [38] Gear fault detection under simultaneous variable load and variable speed using a time-varying AR model and a two-sample Kolmogorov-Smirnov goodness-of-fit test
    Zhan, Yimin
    Shao Yimin
    Mechefske, Chris K.
    Proceedings of the International Conference on Mechanical Transmissions, Vols 1 and 2, 2006, : 1286 - 1290