THE WIDOM-ROWLINSON MODEL UNDER SPIN FLIP: IMMEDIATE LOSS AND SHARP RECOVERY OF QUASILOCALITY

被引:10
|
作者
Jahnel, Benedikt [1 ]
Kuelske, Christof [2 ]
机构
[1] Weierstrass Inst Berlin, Mohrenstr 39, D-10117 Berlin, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 06期
关键词
Gibbsianness; non-Gibbsianness; point processes; Widom-Rowlinson model; spin-flip dynamics; quasilocality; non-almost-sure quasilocality; tau-topology; CENTRAL LIMIT-THEOREMS; NON-GIBBS PROPERTIES; PHASE-TRANSITION; LARGE DEVIATIONS; GIBBSIANNESS; EXISTENCE; DISTRIBUTIONS; GEOMETRY;
D O I
10.1214/17-AAP1298
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the continuum Widom-Rowlinson model under independent spin-flip dynamics and investigate whether and when the time-evolved point process has an (almost) quasilocal specification (Gibbs-property of the time-evolved measure). Our study provides a first analysis of a Gibbs-non-Gibbs transition for point particles in Euclidean space. We find a picture of loss and recovery, in which even more regularity is lost faster than it is for time-evolved spin models on lattices. We show immediate loss of quasilocality in the percolation regime, with full measure of discontinuity points for any specification. For the color-asymmetric percolating model, there is a transition from this non-almostsure quasilocal regime back to an everywhere Gibbsian regime. At the sharp reentrance time t(G) > 0, the model is a.s. quasilocal. For the color-symmetric model, there is no reentrance. On the constructive side, for all t > t(G), we provide everywhere quasilocal specifications for the time-evolved measures and give precise exponential estimates on the influence of boundary condition.
引用
收藏
页码:3845 / 3892
页数:48
相关论文
共 37 条
  • [11] CRITICAL-BEHAVIOR OF THE WIDOM-ROWLINSON LATTICE MODEL
    DICKMAN, R
    STELL, G
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (21): : 8674 - 8676
  • [12] Dynamical Widom-Rowlinson Model and Its Mesoscopic Limit
    Finkelshtein, Dmitri
    Kondratiev, Yuri
    Kutoviy, Oleksandr
    Oliveira, Maria Joao
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 57 - 86
  • [13] SOLUTION OF PERCUS-YEVICK EQUATION FOR WIDOM-ROWLINSON MODEL
    AHN, S
    LEBOWITZ, JL
    PHYSICS LETTERS A, 1973, A 44 (06) : 424 - 426
  • [14] Scaling fields and pressure mixing in the Widom-Rowlinson model
    Ren, Ruichao
    O'Keeffe, C. J.
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (14):
  • [15] A Curie-Weiss theory of the continuum Widom-Rowlinson model
    Kozitsky, Yuri
    Kozlovskii, Mykhailo
    PHYSICS LETTERS A, 2018, 382 (11) : 766 - 770
  • [16] MOLECULAR DYNAMICS OF WIDOM-ROWLINSON PARALLEL HARD-SQUARE MODEL
    FRISCH, HL
    CARLIER, C
    PHYSICAL REVIEW LETTERS, 1972, 28 (16) : 1019 - &
  • [17] MEAN FIELD-THEORY AND INFINITE DIMENSIONALITY IN WIDOM-ROWLINSON MODEL
    LIE, TJ
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (01): : 332 - &
  • [18] TRANSPORT PROPERTIES OF THE WIDOM-ROWLINSON HARD-SPHERE MIXTURE MODEL
    KARKHECK, J
    STELL, G
    JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (09): : 3620 - 3635
  • [19] HIGH-TEMPERATURE ANALYTICITY OF WIDOM-ROWLINSON MODEL WITH FINITE REPULSION
    RUNNELS, LK
    FREASIER, BC
    PHYSICAL REVIEW A, 1973, 8 (04): : 2126 - 2127
  • [20] A phase transition in a Widom-Rowlinson model with Curie-Weiss interaction
    Kozitsky, Yuri
    Kozlovskii, Mykhailo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,