THE WIDOM-ROWLINSON MODEL UNDER SPIN FLIP: IMMEDIATE LOSS AND SHARP RECOVERY OF QUASILOCALITY

被引:10
|
作者
Jahnel, Benedikt [1 ]
Kuelske, Christof [2 ]
机构
[1] Weierstrass Inst Berlin, Mohrenstr 39, D-10117 Berlin, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 06期
关键词
Gibbsianness; non-Gibbsianness; point processes; Widom-Rowlinson model; spin-flip dynamics; quasilocality; non-almost-sure quasilocality; tau-topology; CENTRAL LIMIT-THEOREMS; NON-GIBBS PROPERTIES; PHASE-TRANSITION; LARGE DEVIATIONS; GIBBSIANNESS; EXISTENCE; DISTRIBUTIONS; GEOMETRY;
D O I
10.1214/17-AAP1298
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the continuum Widom-Rowlinson model under independent spin-flip dynamics and investigate whether and when the time-evolved point process has an (almost) quasilocal specification (Gibbs-property of the time-evolved measure). Our study provides a first analysis of a Gibbs-non-Gibbs transition for point particles in Euclidean space. We find a picture of loss and recovery, in which even more regularity is lost faster than it is for time-evolved spin models on lattices. We show immediate loss of quasilocality in the percolation regime, with full measure of discontinuity points for any specification. For the color-asymmetric percolating model, there is a transition from this non-almostsure quasilocal regime back to an everywhere Gibbsian regime. At the sharp reentrance time t(G) > 0, the model is a.s. quasilocal. For the color-symmetric model, there is no reentrance. On the constructive side, for all t > t(G), we provide everywhere quasilocal specifications for the time-evolved measures and give precise exponential estimates on the influence of boundary condition.
引用
收藏
页码:3845 / 3892
页数:48
相关论文
共 37 条
  • [1] Sharp phase transition for the continuum Widom-Rowlinson model
    Dereudre, David
    Houdebert, Pierre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 387 - 407
  • [2] Surface tension of the Widom-Rowlinson model
    de Miguel, E.
    Almarza, N. G.
    Jackson, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (03):
  • [3] Density functional for the Widom-Rowlinson model
    Schmidt, M
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [4] The Widom-Rowlinson model on the Delaunay graph
    Adams, Stefan
    Eyers, Michael
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [5] Structure and phase equilibria of the Widom-Rowlinson model
    Brader, J. M.
    Vink, R. L. C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (03)
  • [6] Direct correlation functions of the Widom-Rowlinson model
    Fantoni, R
    Pastore, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 : 349 - 359
  • [7] The statistical properties of the interfaces for the lattice Widom-Rowlinson model
    Jun, W
    APPLIED MATHEMATICS LETTERS, 2006, 19 (03) : 223 - 228
  • [8] PHASE-TRANSITIONS OF A MULTICOMPONENT WIDOM-ROWLINSON MODEL
    RUNNELS, LK
    LEBOWITZ, JL
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) : 1712 - 1717
  • [9] Phase Transition for Continuum Widom-Rowlinson Model with Random Radii
    Dereudre, David
    Houdebert, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (01) : 56 - 76
  • [10] THE ANALYSIS OF THE WIDOM-ROWLINSON MODEL BY STOCHASTIC GEOMETRIC METHODS
    CHAYES, JT
    CHAYES, L
    KOTECKY, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (03) : 551 - 569