A 0.186-pJ per Bit Latch-Based True Random Number Generator Featuring Mismatch Compensation and Random Noise Enhancement

被引:20
|
作者
Zhang, Ruilin [1 ]
Wang, Xingyu [1 ]
Liu, Kunyang [1 ]
Shinohara, Hirofumi [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu, Fukuoka 8080135, Japan
关键词
Latches; Entropy; Voltage; Oscillators; Inverters; Logic gates; Thermal noise; Attack tolerant; cryptography; hardware security; latch; long-term reliability; low energy consumption; true random number generator (TRNG);
D O I
10.1109/JSSC.2021.3137312
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a mismatch self-compensation latch-based true random number generator (TRNG) that harvests a metastable region's enhanced random noise. The proposed TRNG exhibits high randomness across a wide voltage (0.3-1.0 V) and temperature (-20 degrees C-100 degrees C) range by employing XOR of only four entropy sources (ESs). To achieve a full entropy output, an 8-bit von Neumann post-processing with waiting (VN8W) is used. The randomness of the TRNG's output is verified by NIST SP 800-22 and NIST SP 800-90B tests. The proposed TRNG, fabricated in 130-nm CMOS, achieves state-of-the-art energy of 0.186 pJ/bit at 0.3 V with a core (four ESs + XOR circuits) area of 661 mu m(2) and a total area of 5561 mu m(2), including VN8W. The robustness against power noise injection attacks is also demonstrated. An accelerating aging test revealed that the TRNG achieves a stable operation after 19 h of aging, which is equivalent to the 11-year life reliability. The mismatch-to-noise ratio analysis revealed that the XOR-OUT of TRNG core has more than 6 sigma robustness against random mismatch variations.
引用
收藏
页码:2498 / 2508
页数:11
相关论文
共 33 条