GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES ON PLANAR GRAPHS

被引:0
|
作者
Esteban, Maria J. [1 ]
机构
[1] PSL Res Univ, CEREMADE, CNRS, Univ Paris Dauphine, Pl Lattre Tassigny, F-75016 Paris, France
关键词
Functional inequality; optimizer; extremal function; graph; planar graph; CONCENTRATION-COMPACTNESS PRINCIPLE; NONLINEAR ELLIPTIC-EQUATIONS; MONOTONICITY; CALCULUS; THEOREM; PERIOD;
D O I
10.3934/cpaa.2022051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a family of the interpolation GagliardoNirenberg-Sobolev inequalities on planar graphs. We are interested in knowing when the best constants in the inequalities are achieved. The inequalities being equivalent to some minimization problems, we also analyse the set of solutions of the Euler-Lagrange equations satisfied by extremal functions, or equivalently, by minimizers.
引用
收藏
页码:2101 / 2114
页数:14
相关论文
共 50 条
  • [21] Stability theorems for Gagliardo–Nirenberg–Sobolev inequalities: a reduction principle to the radial case
    B. Ruffini
    Revista Matemática Complutense, 2014, 27 : 509 - 539
  • [22] Optimizers of the Sobolev and Gagliardo-Nirenberg inequalities in (W) over dots,p
    Zhang, Yang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [23] One-dimensional Gagliardo Nirenberg Sobolev inequalities: remarks on duality and flows
    Dolbeault, Jean
    Esteban, Maria J.
    Laptev, Ari
    Loss, Michael
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 : 525 - 550
  • [24] Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups
    Michael Ruzhansky
    Durvudkhan Suragan
    Nurgissa Yessirkegenov
    Semigroup Forum, 2020, 101 : 162 - 191
  • [25] On Gagliardo–Nirenberg Type Inequalities
    V. I. Kolyada
    F. J. Pérez Lázaro
    Journal of Fourier Analysis and Applications, 2014, 20 : 577 - 607
  • [26] Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for some fractional derivatives
    Aidyn Kassymov
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Berikbol T. Torebek
    Banach Journal of Mathematical Analysis, 2021, 15
  • [27] Asymptotic expansions and extremals for the critical Sobolev and Gagliardo- Nirenberg inequalities on a torus
    Bartuccelli, Michele
    Deane, Jonathan
    Zelik, Sergey
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (03) : 445 - 482
  • [28] A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities
    Cordero-Erausquin, D
    Nazaret, B
    Villani, C
    ADVANCES IN MATHEMATICS, 2004, 182 (02) : 307 - 332
  • [29] SHARP GAGLIARDO-NIRENBERG INEQUALITIES IN FRACTIONAL COULOMB-SOBOLEV SPACES
    Bellazzini, Jacopo
    Ghimenti, Marco
    Mercuri, Carlo
    Moroz, Vitaly
    Van Schaftingen, Jean
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 8285 - 8310
  • [30] Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives
    Kassymov, Aidyn
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)