Supports in Lipschitz-free spaces and applications to extremal structure

被引:26
|
作者
Aliaga, Ramon J. [1 ]
Pernecka, Eva [2 ]
Petitjean, Colin [3 ]
Prochazka, Antonin [4 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague 16000, Czech Republic
[3] Univ Paris Est Creteil, UPEM, Univ Gustave Eiffel, CNRS,LAMA, F-77447 Marne La Vallee, France
[4] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Exposed point; Extreme point; Lipschitz-free space; Lipschitz function; Support; DAUGAVET PROPERTY;
D O I
10.1016/j.jmaa.2020.124128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space Mis closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (delta(x) - delta(y))/d(x, y) is an exposed point of the unit ball of F(M) whenever the metric segment [x, y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterizethe extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ON LARGE l1-SUMS OF LIPSCHITZ-FREE SPACES AND APPLICATIONS
    Candido, Leondro
    Guzman, Hector H. T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1135 - 1145
  • [22] Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 16327 - 16362
  • [23] On Lipschitz-free spaces over spheres of Banach spaces
    Candido, Leandro
    Kaufmann, Pedro L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [24] On Disjoint Dynamical Properties and Lipschitz-Free Spaces
    Cobollo, Ch.
    Peris, A.
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [25] Weakly almost square Lipschitz-free spaces
    Kaasik, Jaan Kristjan
    Veeorg, Triinu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [26] Convex integrals of molecules in Lipschitz-free spaces
    Aliaga, Ramon J.
    Pernecka, Eva
    Smith, Richard J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [27] Lipschitz-free spaces and approximating sequences of projections
    Godefroy, Gilles
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [28] Daugavet points and Δ-points in Lipschitz-free spaces
    Jung, Mingu
    Rueda Zoca, Abraham
    STUDIA MATHEMATICA, 2022, 265 (01) : 37 - 56
  • [29] On the strongly subdifferentiable points in Lipschitz-free spaces
    Cobollo, Christian
    Dantas, Sheldon
    Hajek, Petr
    Jung, Mingu
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2025, 19 (01)
  • [30] Lipschitz-free spaces and approximating sequences of projections
    Gilles Godefroy
    Banach Journal of Mathematical Analysis, 2024, 18