Supports in Lipschitz-free spaces and applications to extremal structure

被引:26
|
作者
Aliaga, Ramon J. [1 ]
Pernecka, Eva [2 ]
Petitjean, Colin [3 ]
Prochazka, Antonin [4 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague 16000, Czech Republic
[3] Univ Paris Est Creteil, UPEM, Univ Gustave Eiffel, CNRS,LAMA, F-77447 Marne La Vallee, France
[4] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Exposed point; Extreme point; Lipschitz-free space; Lipschitz function; Support; DAUGAVET PROPERTY;
D O I
10.1016/j.jmaa.2020.124128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space Mis closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (delta(x) - delta(y))/d(x, y) is an exposed point of the unit ball of F(M) whenever the metric segment [x, y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterizethe extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On the preserved extremal structure of Lipschitz-free spaces
    Aliaga, Ramon J.
    Guirao, Antonio J.
    STUDIA MATHEMATICA, 2019, 245 (01) : 1 - 14
  • [2] Supports and extreme points in Lipschitz-free spaces
    Aliaga, Ramon J.
    Pernecka, Eva
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) : 2073 - 2089
  • [3] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [4] Products of Lipschitz-free spaces and applications
    Kaufmann, Pedro Levit
    STUDIA MATHEMATICA, 2015, 226 (03) : 213 - 227
  • [5] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [6] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [7] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [8] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [9] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [10] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    Mathematische Annalen, 2024, 388 : 1053 - 1090