CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease

被引:16
|
作者
Demirci, Selami [1 ]
Leonard, Alexis [1 ]
Essawi, Khaled [1 ,2 ]
Tisdale, John F. [1 ]
机构
[1] NHLBI, Cellular & Mol Therapeut Branch, NIH, Bethesda, MD 20814 USA
[2] Jazan Univ, Dept Med Lab Sci, Coll Appl Med Sci, Jazan 45142, Saudi Arabia
关键词
GENE EDITING STRATEGIES; GAMMA-GLOBIN GENE; HEREDITARY PERSISTENCE; GENOMIC DNA; BCL11A; THERAPY; HYDROXYUREA; TARGET; ANEMIA; EXPRESSION;
D O I
10.1016/j.omtm.2021.09.010
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Genome editing is potentially a curative technique available to all individuals with beta-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with b-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 50 条
  • [1] Modelling the Applications of CRISPR-Cas9 for Treating Sickle Cell Disease
    Cooper, Grace
    Akteke, Elfin
    Dalvi, Viggo
    Delage, Laura
    Feberova, Natalie
    Fujikawa, Kento
    Klousseh, Edem
    Manoharan, Harish
    Mcdaniel, Kieran
    Powter, Morgan
    Seyoum, Michael
    Greig, James
    MacGillivray, Brendan
    FASEB JOURNAL, 2022, 36
  • [2] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Norton, Mary E.
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2021, 76 (06) : 327 - 329
  • [3] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Haydar Frangoul
    四川生理科学杂志, 2020, 42 (04) : 506 - 506
  • [4] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03): : 252 - 260
  • [5] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Mehta, Jayesh
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23):
  • [6] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Lakshmi, Dhanya N.
    INDIAN PEDIATRICS, 2022, 59 (06) : 458 - 458
  • [7] CRISPR-Cas9 Genome Editing of Human CD34+Cells at Gamma-globin Promoter to Induce Fetal Hemoglobin as Sickle Cell Disease Therapy
    Katta, Varun
    O'Keefe, Kiera
    Lazzarotto, Cicera R.
    Mayuranathan, Thiyagaraj
    Yen, Jonathan
    Lee, GaHyun
    Li, Yichao
    Uchida, Naoya
    Pruett-Miller, Shondra M.
    Tisdale, John
    Sharma, Akshay
    Weiss, Mitchell J.
    Tsai, Shengdar Q.
    MOLECULAR THERAPY, 2021, 29 (04) : 9 - 9
  • [8] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia REPLY
    Frangoul, Haydar
    Ho, Tony W.
    Corbacioglu, Selim
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23):
  • [9] Increasing fetal hemoglobin expression by CRISPR-Cas9 induced variants
    Wartiovaara, K.
    Novik, Y.
    Balboa, D.
    Otonkoski, T.
    HUMAN GENE THERAPY, 2016, 27 (11) : A142 - A142
  • [10] Approval of the First CRISPR-Cas9 Gene Editing Therapy for Sickle Cell Disease
    Campbell, Sean T.
    CLINICAL CHEMISTRY, 2024, 70 (10) : 1298 - 1298