Manifolds for pose tracking from monocular video

被引:4
|
作者
Basu, Saurav [1 ,2 ]
Poulin, Joshua [3 ]
Acton, Scott T. [1 ]
机构
[1] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[2] IBM Res, New Delhi 110070, India
[3] Hanscom AFB, Laurence G Hanscom Field, Bedford, MA 01731 USA
关键词
pose tracking; video analysis; manifolds; motion vector flow; PEOPLE;
D O I
10.1117/1.JEI.24.2.023014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth). (C) 2015 SPIE and IS&T
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Surface deformation tracking in monocular laparoscopic video
    Liu, Ziteng
    Gao, Wenpeng
    Zhu, Jiahua
    Yu, Zhi
    Fu, Yili
    MEDICAL IMAGE ANALYSIS, 2023, 86
  • [22] Monocular 3D Pose Tracking of a Specular Object
    Oumer, Nassir W.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 458 - 465
  • [23] Monocular body pose estimation by color histograms and point tracking
    Grest, Daniel
    Herzog, Dennis
    Koch, Reinhard
    PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 576 - 586
  • [24] Monocular 3D Pose Estimation and Tracking by Detection
    Andriluka, Mykhaylo
    Roth, Stefan
    Schiele, Bernt
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 623 - 630
  • [25] Automatic reconstruction of 3D human motion pose from uncalibrated monocular video sequences based on markerless human motion tracking
    Zou, Beiji
    Chen, Shu
    Shi, Cao
    Providence, Umugwaneza Marie
    PATTERN RECOGNITION, 2009, 42 (07) : 1559 - 1571
  • [26] Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video
    Zhou, Xiaowei
    Zhu, Menglong
    Leonardos, Spyridon
    Derpanis, Konstantinos G.
    Daniilidis, Kostas
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4966 - 4975
  • [27] Uncertainty-Aware 3D Human Pose Estimation from Monocular Video
    Zhang, Jinlu
    Chen, Yujin
    Tu, Zhigang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5102 - 5113
  • [28] Pose2Gait: Extracting Gait Features from Monocular Video of Individuals with Dementia
    Malin-Mayor, Caroline
    Adeli, Vida
    Sabo, Andrea
    Noritsyn, Sergey
    Gorodetsky, Carolina
    Fasano, Alfonso
    Iaboni, Andrea
    Taati, Babak
    PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2023, 2023, 14277 : 265 - 276
  • [29] HPOF: 3D Human Pose Recovery from Monocular Video with Optical Flow
    Ji, Bin
    Yang, Chen
    Yao, Shunyu
    Pan, Ye
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 144 - 154
  • [30] Model-Based 3D Hand Pose Estimation from Monocular Video
    de La Gorce, Martin
    Fleet, David J.
    Paragios, Nikos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) : 1793 - 1805