Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations

被引:27
|
作者
Flandoli, Franco [1 ]
Galeati, Lucio [2 ]
Luo, Dejun [3 ,4 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Chinese Acad Sci, Key Lab RCSDS, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
2D Euler equations; Vorticity; Transport noise; Scaling limit; 2D Navier-Stokes equations; DIFFERENTIAL-EQUATIONS; INVARIANT MEASURE; FLOWS; CONTINUITY; UNIQUENESS;
D O I
10.1007/s00028-020-00592-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of stochastic 2D Euler equations in vorticity form on the torus, with transport-type noises and L-2-initial data. Under a suitable scaling of the noises, we show that the solutions converge weakly to that of the deterministic 2D Navier-Stokes equations. Consequently, we deduce that the weak solutions of the stochastic 2D Euler equations are approximately unique and "weakly quenched exponential mixing."
引用
收藏
页码:567 / 600
页数:34
相关论文
共 50 条
  • [41] Malliavin calculus for highly degenerate 2D stochastic Navier-Stokes equations
    Hairer, M
    Mattingly, JC
    Pardoux, É
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 793 - 796
  • [42] Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations
    Sundar, P.
    Yin, Hong
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (04) : 1216 - 1234
  • [43] Global solutions of stochastic 2D Navier-Stokes equations with Levy noise
    Dong Zhao
    Xie YinChao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07): : 1497 - 1524
  • [44] Feedback stabilization for the 2D Navier-Stokes equations
    Fursikov, AV
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 179 - 196
  • [45] On the dynamics of Navier-Stokes and Euler equations
    Lan, Yueheng
    Li, Y. Charles
    JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (01) : 35 - 76
  • [46] Generator of Solutions for 2D Navier-Stokes Equations
    Koptev, Alexander, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (03): : 324 - 330
  • [47] Topology of trajectories of the 2D Navier-Stokes equations
    Lee, Jon
    CHAOS, 1992, 2 (04) : 537 - 565
  • [48] On the Dynamics of Navier-Stokes and Euler Equations
    Yueheng Lan
    Y. Charles Li
    Journal of Statistical Physics, 2008, 132
  • [49] PROJECTION OF NAVIER-STOKES EQUATIONS UPON EULER EQUATIONS
    ELLIS, RS
    PINSKY, MA
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1975, 54 (02): : 157 - 181
  • [50] On Some Model Equations of Euler and Navier-Stokes Equations
    Du, Dapeng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (02) : 281 - 290