Wavelet-SOM in feature extraction of hyperspectral data for classification of nematode species

被引:3
|
作者
Doshi, Rushabh A. [1 ]
King, Roger L. [1 ]
Lawrence, Gary W. [2 ]
机构
[1] Mississippi State Univ, GeoResources Inst, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, Dept Entomol & Plant Pathol, Mississippi State, MS 39762 USA
关键词
discrete wavelet transform; hyperspectral; nematode; self-organized maps;
D O I
10.1109/IGARSS.2007.4423429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A plant's reflectance can vary significantly depending on the type of stressors affecting it. Parasitic nematode species such as Meloidogyne incognita and Rotylenchulus reniformis are two of the leading nematode species affecting cotton plants. There is a need to detect the type of nematode in order to start proper nematode management program. Use of remotely sensed hyperspectral data could be one of the choices for species identification but, remotely sensed hyperspectral data are usually associated with high dimensions and requires some sort of dimensionality reduction without losing vital information. Some of the standard feature extraction and dimensionality reduction methods widely used nowadays are DWT and Self-Organized Maps (SOM) based methods. In this paper, authors explore the possibility of combining two above mentioned feature extraction and dimensionality reduction methods to extract feature for better classification accuracies pertaining to this study. The accuracies were then compared with the accuracies obtained using features extracted from DWT and SOM-based methods separately. For the entire analysis, SOM-supervised classification method was used.
引用
收藏
页码:2818 / +
页数:2
相关论文
共 50 条
  • [21] GABOR WAVELET BASED FEATURE EXTRACTION AND FUSION FOR HYPERSPECTRAL AND LIDAR REMOTE SENSING DATA
    Jia, Sen
    Zhang, Meng
    Zhu, Jiasong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1 - 4
  • [22] Salient feature extraction for hyperspectral image classification
    Yu, Xuchu
    Wang, Ruirui
    Liu, Bing
    Yu, Anzhu
    REMOTE SENSING LETTERS, 2019, 10 (06) : 553 - 562
  • [23] Slow feature extraction for hyperspectral image classification
    Liu, Bing
    Yu, Anzhu
    Tan, Xiong
    Wang, Ruirui
    REMOTE SENSING LETTERS, 2021, 12 (05) : 429 - 438
  • [24] Feature extraction for hyperspectral image classification: a review
    Kumar, Brajesh
    Dikshit, Onkar
    Gupta, Ashwani
    Singh, Manoj Kumar
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (16) : 6248 - 6287
  • [25] Hyperspectral image classification with unsupervised feature extraction
    Sun, Qiaoqiao
    Bourennane, Salah
    REMOTE SENSING LETTERS, 2020, 11 (05) : 475 - 484
  • [26] SPARSE FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Lu
    Xie, Xiaoming
    Li, Wei
    Du, Qian
    Li, Guojun
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 1067 - 1070
  • [27] A new hybrid feature extraction method in a dyadic scheme for classification of hyperspectral data
    Shahdoosti, Hamid Reza
    Javaheri, Nayereh
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (01) : 101 - 130
  • [28] Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
    Xi Y.
    Ye Z.
    Journal of Beijing Institute of Technology (English Edition), 2023, 32 (01): : 13 - 22
  • [29] Regularized covariance estimators for hyperspectral data classification and its application to feature extraction
    Kuo, BC
    Landgrebe, DA
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 3510 - 3512
  • [30] Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
    Yongqiang Xi
    Zhen Ye
    JournalofBeijingInstituteofTechnology, 2023, 32 (01) : 13 - 22