Tuning the Fano factor of graphene via Fermi velocity modulation

被引:22
|
作者
Lima, Jonas R. F. [1 ]
Barbosa, Anderson L. R. [1 ]
Bezerra, C. G. [2 ]
Pereira, Luiz Felipe C. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078970 Natal, RN, Brazil
关键词
SHOT-NOISE; MESOSCOPIC CONDUCTORS; BILAYER GRAPHENE; DIRAC FERMIONS; TRANSPORT; GAP;
D O I
10.1016/j.physe.2017.10.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 50 条
  • [41] Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene
    Emani, Naresh K.
    Chung, Ting-Fung
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    Chen, Yong P.
    Boltasseva, Alexandra
    NANO LETTERS, 2014, 14 (01) : 78 - 82
  • [42] Effects of Fermi velocity engineering in magnetic graphene superlattices
    Bezerra, Icaro S. F.
    Lima, Jonas R. F.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 123
  • [43] Controlling the energy gap of graphene by Fermi velocity engineering
    Lima, Jonas R. F.
    PHYSICS LETTERS A, 2015, 379 (03) : 179 - 182
  • [44] Numerical studies of conductivity and Fano factor in disordered graphene
    Lewenkopf, C. H.
    Mucciolo, E. R.
    Castro Neto, A. H.
    PHYSICAL REVIEW B, 2008, 77 (08)
  • [45] Many-body filling factor dependent renormalization of Fermi velocity in graphene in strong magnetic field
    Sokolik, Alexey A.
    Lozovik, Yurii E.
    PHYSICAL REVIEW B, 2019, 99 (08)
  • [46] Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation
    Park, Myung Jin
    Choi, Hae-Hyun
    Park, Baekwon
    Lee, Jae Yoon
    Lee, Chul-Ho
    Choi, Yong Seok
    Kim, Youngsoo
    Yoo, Je Min
    Lee, Hyukjin
    Hong, Byung Hee
    CHEMISTRY OF MATERIALS, 2018, 30 (16) : 5602 - 5609
  • [47] A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications
    Amin, M.
    Farhat, M.
    Bagci, H.
    SCIENTIFIC REPORTS, 2013, 3
  • [48] A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications
    M. Amin
    M. Farhat
    H. Baǧcı
    Scientific Reports, 3
  • [49] Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation
    del Corro, Elena
    Pena-Alvarez, Miriam
    Sato, Kentaro
    Morales-Garcia, Angel
    Bousa, Milan
    Mracko, Michal
    Kolman, Radek
    Pacakova, Barbara
    Kavan, Ladislav
    Kalbac, Martin
    Frank, Otakar
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [50] Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature
    Du Yi-Shuai
    Kang Wei
    Zheng Rui-Lun
    ACTA PHYSICA SINICA, 2017, 66 (01)