Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions

被引:4
|
作者
Imura, Ken-Ichiro [1 ]
Fukui, Takahiro [2 ]
Fujiwara, Takanori [2 ]
机构
[1] Hiroshima Univ, AdSM, Dept Quantum Matter, Hiroshima 7398530, Japan
[2] Ibaraki Univ, Dept Phys, Mito, Ibaraki 3108512, Japan
关键词
Majorana bound state; Bogoliubov-de Gennes equation; Dirac Hamiltonian; Index theorem; Topological invariant; Berry phase; SYSTEM;
D O I
10.1016/j.nuclphysb.2011.09.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chem number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:306 / 320
页数:15
相关论文
共 50 条
  • [21] Symmetry-based indicators for topological Bogoliubov-de Gennes Hamiltonians
    Geier, Max
    Brouwer, Piet W.
    Trifunovic, Luka
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [22] Reformulation of Bogoliubov-de Gennes equations for a d-wave superconductor
    Zhu, JX
    PHYSICA C, 2000, 340 (2-3): : 230 - 234
  • [23] Exploring the vortex phase diagram of Bogoliubov-de Gennes disordered superconductors
    Fan, Bo
    Garcia-Garcia, Antonio Miguel
    SCIPOST PHYSICS, 2023, 15 (05):
  • [24] Electron-hole coherent states for the Bogoliubov-de Gennes equation
    Gnutzmann, Sven
    Kus, Marek
    Langham-Lopez, Jordan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [25] Bogoliubov-de Gennes versus quasiclassical description of Josephson layered structures
    Ozana, M
    Shelankov, A
    Tobiska, J
    PHYSICAL REVIEW B, 2002, 66 (05)
  • [26] Exact Bogoliubov-de Gennes solutions for gray-soliton backgrounds
    Walczak, P. B.
    Anglin, J. R.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [27] Anderson's "theorem" and Bogoliubov-de Gennes equations for surfaces and impurities
    Tanaka, K
    Marsiglio, F
    PHYSICA C, 2000, 341 : 179 - 180
  • [28] Non-Bloch band theory in bosonic Bogoliubov-de Gennes systems
    Yokomizo, Kazuki
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [29] The Bogoliubov-de Gennes system, the AKNS hierarchy, and nonlinear quantum mechanical supersymmetry
    Correa, Francisco
    Dunne, Gerald V.
    Plyushchay, Mikhail S.
    ANNALS OF PHYSICS, 2009, 324 (12) : 2522 - 2547
  • [30] Fully Microscopic Treatment of Magnetic Field Using Bogoliubov-De Gennes Approach
    Neverov, Vyacheslav D.
    Kalashnikov, Alexander
    Lukyanov, Alexander E.
    Krasavin, Andrey V.
    Croitoru, Mihail D.
    Vagov, Alexei
    CONDENSED MATTER, 2024, 9 (01):