Spatial information sampling: another feedback mechanism of realising adaptive parameter control in meta-heuristic algorithms

被引:9
|
作者
Yang, Haichuan [1 ]
Tao, Sichen [1 ]
Zhang, Zhiming [1 ]
Cai, Zonghui [1 ]
Gao, Shangce [1 ]
机构
[1] Univ Toyama, Fac Engn, Toyama 9308555, Japan
关键词
meta-heuristic algorithms; feedback method; space-based information; GRAVITATIONAL SEARCH ALGORITHM; PARTICLE SWARM OPTIMIZATION; ANT COLONY OPTIMIZATION; DIFFERENTIAL EVOLUTION; POPULATION INTERACTION; GLOBAL OPTIMIZATION; NETWORKS; CHAOS;
D O I
10.1504/IJBIC.2022.120751
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper innovatively proposes a spatial information sampling strategy to adaptively control the parameters of meta-heuristic algorithms (MHAs). The solutions' spatial distribution information in current iterations is used to control the parameters in the following iterations. An adaptive parameter control method requires obtaining information from the operation of MHAs and feeding it back to the adjustment of parameters. The mainstream information acquisition method is to record the changes to the solutions in the iterative process. In essence, the proposed feedback method, i.e., chaotic perceptron (CP), makes use of the temporal information arising from the change of solutions in MHAs. The wingsuit flying search algorithm and differential evolution are employed as case studies. Experimental results validate the effectiveness of the proposed strategy. The source code of CP can be found at https: //toyamaailab.github.io/.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [1] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [2] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [3] An adaptive control study for a DC motor using meta-heuristic algorithms
    Rodriguez-Molina, Alejandro
    Gabriel Villarreal-Cervantes, Miguel
    Aldape-Perez, Mario
    IFAC PAPERSONLINE, 2017, 50 (01): : 13114 - 13120
  • [4] An adaptive control study for the DC motor using meta-heuristic algorithms
    Rodriguez-Molina, Alejandro
    Gabriel Villarreal-Cervantes, Miguel
    Aldape-Perez, Mario
    SOFT COMPUTING, 2019, 23 (03) : 889 - 906
  • [5] An adaptive control study for the DC motor using meta-heuristic algorithms
    Alejandro Rodríguez-Molina
    Miguel Gabriel Villarreal-Cervantes
    Mario Aldape-Pérez
    Soft Computing, 2019, 23 : 889 - 906
  • [6] A unified approach to parameter selection in meta-heuristic algorithms for layout optimization
    Kaveh, A.
    Farhoudi, N.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2011, 67 (10) : 1453 - 1462
  • [7] A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Gu, Qiong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 141
  • [8] Meta-heuristic algorithms for the control tuning of omnidirectional mobile robots
    Serrano-Perez, Omar
    Villarreal-Cervantes, Miguel G.
    Gonzalez-Robles, Juan C.
    Rodriguez-Molina, Alejandro
    ENGINEERING OPTIMIZATION, 2020, 52 (02) : 325 - 342
  • [9] Population-level center-based sampling for meta-heuristic algorithms
    Khosrowshahli, Rasa
    Rahnamayan, Shahryar
    Ibrahim, Amin
    Bidgoli, Azam Asilian
    Makrehchi, Masoud
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92
  • [10] Memory backtracking strategy: An evolutionary updating mechanism for meta-heuristic algorithms
    Jia, Heming
    Lu, Chenghao
    Xing, Zhikai
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84