A class of shape optimization problems for some nonlocal operators

被引:9
|
作者
Fernandez Bonder, Julian [1 ,2 ]
Ritorto, Antonella [1 ,2 ]
Martin Salort, Ariel [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
关键词
Fractional partial differential equations; shape optimization; SOBOLEV SPACES; LEVY; DIFFUSION; DYNAMICS; PATTERNS; GUIDE;
D O I
10.1515/acv-2016-0065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study a family of shape optimization problem where the state equation is given in terms of a nonlocal operator. Examples of the problems considered are monotone combinations of fractional eigenvalues. Moreover, we also analyze the transition from nonlocal to local state equations.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [41] Shape optimization for nonlocal anisotropic energies
    Cristoferi, R.
    Mora, M. G.
    Scardia, L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (09) : 780 - 804
  • [42] Compactness and dichotomy in nonlocal shape optimization
    Parini, E.
    Salort, A.
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (11) : 2208 - 2232
  • [43] On a class of problems involving a nonlocal operator
    Corrêa, FJSA
    Menezes, SDB
    Ferreira, J
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 475 - 489
  • [44] On a class of variational problems with nonlocal integrant
    Maksimov, Vladimir P.
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (01) : 97 - 101
  • [45] ON A CLASS OF GENERAL NONLOCAL ELLIPTIC PROBLEMS
    ROITBERG, YA
    SHEFTEL, ZG
    DOKLADY AKADEMII NAUK SSSR, 1970, 192 (03): : 511 - &
  • [46] ON A CLASS OF NONLOCAL NONLINEAR ELLIPTIC PROBLEMS
    CHIPOT, M
    RODRIGUES, JF
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (03): : 447 - 468
  • [47] On positive solutions for a class of nonlocal problems
    Dai, Guowei
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (58) : 1 - 12
  • [48] Predicting CMA-ES Operators as Inductive Biases for Shape Optimization Problems
    Friess, Stephen
    Tino, Peter
    Menzel, Stefan
    Sendhoff, Bernhard
    Yao, Xin
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [49] A shape optimization approach for a class of free boundary problems of Bernoulli type
    Boulkhemair, Abdesslam
    Nachaoui, Abdeljalil
    Chakib, Abdelkrim
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 205 - 221
  • [50] A shape optimization approach for a class of free boundary problems of Bernoulli type
    Abdesslam Boulkhemair
    Abdeljalil Nachaoui
    Abdelkrim Chakib
    Applications of Mathematics, 2013, 58 : 205 - 221