BOOSTED NONPARAMETRIC HAZARDS WITH TIME-DEPENDENT COVARIATES

被引:0
|
作者
Lee, Donald K. K. [1 ,2 ]
Chen, Ningyuan [3 ]
Ishwaran, Hemant [4 ]
机构
[1] Emory Univ, Goizueta Business Sch, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[3] Univ Toronto, Rotman Sch Management, Toronto, ON, Canada
[4] Univ Miami, Div Biostat, Coral Gables, FL 33124 USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 04期
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Survival analysis; gradient boosting; functional data; stepsize shrinkage; regression trees; likelihood functional; CONVERGENCE; PREDICTION; MODEL; ALGORITHMS; REGRESSION;
D O I
10.1214/20-AOS2028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given functional data from a survival process with time-dependent covariates, we derive a smooth convex representation for its nonparametric loglikelihood functional and obtain its functional gradient. From this, we devise a generic gradient boosting procedure for estimating the hazard function nonparametrically. An illustrative implementation of the procedure using regression trees is described to show how to recover the unknown hazard. The generic estimator is consistent if the model is correctly specified; alternatively, an oracle inequality can be demonstrated for tree-based models. To avoid overfitting, boosting employs several regularization devices. One of them is stepsize restriction, but the rationale for this is somewhat mysterious from the viewpoint of consistency. Our work brings some clarity to this issue by revealing that stepsize restriction is a mechanism for preventing the curvature of the risk from derailing convergence.
引用
收藏
页码:2101 / 2128
页数:28
相关论文
共 50 条
  • [21] Marginal proportional hazards models for clustered interval-censored data with time-dependent covariates
    Cook, Kaitlyn
    Lu, Wenbin
    Wang, Rui
    BIOMETRICS, 2023, 79 (03) : 1670 - 1685
  • [22] Non-parametric estimation for baseline hazards function and covariate effects with time-dependent covariates
    Gao, Feng
    Manatunga, Amita K.
    Chen, Shande
    STATISTICS IN MEDICINE, 2007, 26 (04) : 857 - 868
  • [23] The Proportional Hazards Modeling of Water Main Failure Data Incorporating the Time-dependent Effects of Covariates
    Suwan Park
    Hwandon Jun
    Newland Agbenowosi
    Bong Jae Kim
    Kiyoung Lim
    Water Resources Management, 2011, 25 : 1 - 19
  • [24] The Proportional Hazards Modeling of Water Main Failure Data Incorporating the Time-dependent Effects of Covariates
    Park, Suwan
    Jun, Hwandon
    Agbenowosi, Newland
    Kim, Bong Jae
    Lim, Kiyoung
    WATER RESOURCES MANAGEMENT, 2011, 25 (01) : 1 - 19
  • [25] A proportional hazards model with time-dependent covariates and time-varying effects for analysis of fetal and infant death
    Platt, RW
    Joseph, KS
    Ananth, CV
    Grondines, J
    Abrahamowicz, M
    Kramer, MS
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (03) : 199 - 206
  • [26] Analysis of time-dependent covariates in failure time data
    Aydemir, L
    Aydemir, S
    Dirschedl, P
    STATISTICS IN MEDICINE, 1999, 18 (16) : 2123 - 2134
  • [27] On the Need for Landmark Analysis or Time-dependent Covariates
    Zabor, Emily C.
    Assel, Melissa
    JOURNAL OF UROLOGY, 2023, 209 (06): : 1060 - 1062
  • [28] Propensity score matching with time-dependent covariates
    Lu, B
    BIOMETRICS, 2005, 61 (03) : 721 - 728
  • [29] Competing risks models and time-dependent covariates
    Adrian Barnett
    Nick Graves
    Critical Care, 12
  • [30] Competing risks models and time-dependent covariates
    Barnett, Adrian
    Graves, Nick
    CRITICAL CARE, 2008, 12 (02):