BOOSTED NONPARAMETRIC HAZARDS WITH TIME-DEPENDENT COVARIATES

被引:0
|
作者
Lee, Donald K. K. [1 ,2 ]
Chen, Ningyuan [3 ]
Ishwaran, Hemant [4 ]
机构
[1] Emory Univ, Goizueta Business Sch, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[3] Univ Toronto, Rotman Sch Management, Toronto, ON, Canada
[4] Univ Miami, Div Biostat, Coral Gables, FL 33124 USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 04期
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Survival analysis; gradient boosting; functional data; stepsize shrinkage; regression trees; likelihood functional; CONVERGENCE; PREDICTION; MODEL; ALGORITHMS; REGRESSION;
D O I
10.1214/20-AOS2028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given functional data from a survival process with time-dependent covariates, we derive a smooth convex representation for its nonparametric loglikelihood functional and obtain its functional gradient. From this, we devise a generic gradient boosting procedure for estimating the hazard function nonparametrically. An illustrative implementation of the procedure using regression trees is described to show how to recover the unknown hazard. The generic estimator is consistent if the model is correctly specified; alternatively, an oracle inequality can be demonstrated for tree-based models. To avoid overfitting, boosting employs several regularization devices. One of them is stepsize restriction, but the rationale for this is somewhat mysterious from the viewpoint of consistency. Our work brings some clarity to this issue by revealing that stepsize restriction is a mechanism for preventing the curvature of the risk from derailing convergence.
引用
收藏
页码:2101 / 2128
页数:28
相关论文
共 50 条