Graph surfaces of codimension two over three-dimensional Carnot-Carath,odory spaces

被引:3
|
作者
Karmanova, M. B. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562416030273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An area formula for graph surfaces of codimension two over three-dimensional Carnot-Carath,odory spaces is derived and applied to obtain basic properties of minimal surfaces.
引用
收藏
页码:322 / 325
页数:4
相关论文
共 50 条
  • [41] A complete classification of parallel surfaces in three-dimensional homogeneous spaces
    Inoguchi, Jun-ichi
    Van der Veken, Joeri
    GEOMETRIAE DEDICATA, 2008, 131 (01) : 159 - 172
  • [42] Codimension-One and -Two Bifurcations of a Three-Dimensional Discrete Game Model
    Eskandari, Zohreh
    Alidousti, Javad
    Ghaziani, Reza Khoshsiar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (02):
  • [43] Geometry of Two- and Three-Dimensional Minkowski Spaces
    V. V. Makeev
    Journal of Mathematical Sciences, 2003, 113 (6) : 812 - 815
  • [44] Robustl generic and efficient construction of envelopes of surfaces in three-dimensional spaces
    Meyerovitch, Michal
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 792 - 803
  • [45] Three-dimensional structure of electroosmotic flow over heterogeneous surfaces
    Erickson, D
    Li, DQ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (44): : 12212 - 12220
  • [46] Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces
    Wu, Yingdan
    Dong, Xiaoguang
    Kim, Jae-Kang
    Wang, Chunxiang
    Sitti, Metin
    SCIENCE ADVANCES, 2022, 8 (21)
  • [47] Nitrosoarene Dimerization on Two- and Three-dimensional Gold Surfaces
    Biljan, Ivana
    Medancic, Tina
    Kralj, Marko
    Misic Radic, Tea
    Svetlicic, Vesna
    Vancik, Hrvoj
    CROATICA CHEMICA ACTA, 2013, 86 (01) : 83 - 94
  • [48] Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Δri = λiri
    Mohammed Bekkar
    Bendehiba Senoussi
    Journal of Geometry, 2012, 103 (1) : 17 - 29
  • [49] Some characterizations of totally umbilical surfaces in three-dimensional warped product spaces
    Haesen, S.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (04): : 303 - 314
  • [50] Some characterizations of totally umbilical surfaces in three-dimensional warped product spaces
    S. Haesen
    Monatshefte für Mathematik, 2007, 152 : 303 - 314