Topological groups and C-embeddings

被引:12
|
作者
Arhangel'skii, AV [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Moscow space; Dieudonne completion; Hewitt-Nachbin completion; C-embedding; topological group; souslin number; tightness; Rajkov completion;
D O I
10.1016/S0166-8641(00)00073-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of a Moscow space is applied to the study of some problems of topological algebra, following an approach introduced by AX Arhangel'skii [Comment. Math. Univ. Carolin. 41 (2000) 585-595]. In particular, many new, and, it seems, unexpected, solutions to the equation vX x vY = v(X x Y) are identified. We also find new large classes of topological groups G, for which the operations in G can be extended to the Dieudonne completion of the space G in such a way that G becomes a topological subgroup of the topological group muG. On the other hand, it was shown by AX Arhangel'skii [Comment. Math. Univ. Carolin. 41 (2000) 585-595] that there exists an Abelian topological group G for which such an extension is impossible (this provided an answer to a question of V.G. Pestov and M.G. Tkacenko, dating back to 1985). Some new open questions are formulated. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:265 / 289
页数:25
相关论文
共 50 条
  • [41] EMBEDDINGS INTO HOPFIAN GROUPS
    MILLER, CF
    SCHUPP, PE
    JOURNAL OF ALGEBRA, 1971, 17 (02) : 171 - &
  • [42] ON EMBEDDINGS OF QUANTUM GROUPS
    BRAVERMAN, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (02): : 111 - 115
  • [43] Embeddings of valued groups
    Saarimaki, M
    Sorjonen, P
    MATHEMATICA SCANDINAVICA, 1995, 76 (02) : 205 - 213
  • [44] NEAWalk: Inferring missing social interactions via topological-temporal embeddings of social groups
    Shen, Yinghan
    Jiang, Xuhui
    Li, Zijian
    Wang, Yuanzhuo
    Jin, Xiaolong
    Ma, Shengjie
    Cheng, Xueqi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (10) : 2771 - 2795
  • [45] Groups with no coarse embeddings into hyperbolic groups
    Hume, David
    Sisto, Alessandro
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1657 - 1670
  • [47] On topological embeddings of linear metric spaces
    Witold Marciszewski
    Mathematische Annalen, 1997, 308 : 21 - 30
  • [48] On ρ-Constrained Upward Topological Book Embeddings
    Mchedlidze, Tamara
    Symvonis, Antonios
    GRAPH DRAWING, 2010, 5849 : 411 - 412
  • [49] EMBEDDINGS OF FREE TOPOLOGICAL VECTOR SPACES
    Leiderman, Arkady
    Morris, Sidney A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) : 311 - 324
  • [50] UPWARD TOPOLOGICAL BOOK EMBEDDINGS OF DAGS
    Di Giacomo, Emilio
    Giordano, Francesco
    Liotta, Giuseppe
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 479 - 489