Linguistic features and psychological states: A machine-learning based approach

被引:1
|
作者
Du, Xiaowei [1 ]
Sun, Yunmei [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Foreign Language, Wuhan, Peoples R China
来源
FRONTIERS IN PSYCHOLOGY | 2022年 / 13卷
关键词
psychological states; linguistic features; machine learning algorithms; classification; mental disorders; LANGUAGE USE; EMOTIONAL EXPRESSION; SUICIDE NOTES; DEPRESSION; WORDS; TEXT; SENTIMENT; HEALTH; PRONOUN; POETRY;
D O I
10.3389/fpsyg.2022.955850
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Previous research mostly used simplistic measures and limited linguistic features (e.g., personal pronouns, absolutist words, and sentiment words) in a text to identify its author's psychological states. In this study, we proposed using additional linguistic features, that is, sentiments polarities and emotions, to classify texts of various psychological states. A large dataset of forum posts including texts of anxiety, depression, suicide ideation, and normal states were experimented with machine-learning algorithms. The results showed that the proposed linguistic features with machine-learning algorithms, namely Support Vector Machine and Deep Learning achieved a high level of performance in the detection of psychological state. The study represents one of the first attempts that uses sentiment polarities and emotions to detect texts of psychological states, and the findings may contribute to our understanding of how accuracy may be enhanced in the detection of various psychological states. Significance and suggestions of the study are also offered.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24
  • [32] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)
  • [33] MACE: A Machine-learning Approach to Chemistry Emulation
    Maes, Silke
    De Ceuster, Frederik
    van de Sande, Marie
    Decin, Leen
    ASTROPHYSICAL JOURNAL, 2024, 969 (02):
  • [34] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [35] Machine-learning approach for discovery of conventional superconductors
    Tran, Huan
    Vu, Tuoc N.
    PHYSICAL REVIEW MATERIALS, 2023, 7 (05)
  • [36] Machine-learning approach predicts RNA structures
    Arnaud, Celia
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (32) : 8 - 8
  • [37] A Machine-learning Approach to Enhancing eROSITA Observations
    Soltis, John
    Ntampaka, Michelle
    Wu, John F.
    ZuHone, John
    Evrard, August
    Farahi, Arya
    Ho, Matthew
    Nagai, Daisuke
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):
  • [38] Forecasting client retention - A machine-learning approach
    Elisa Schaeffer, Satu
    Rodriguez Sanchez, Sara Veronica
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2020, 52
  • [39] A machine-learning approach to ranking RDF properties
    Dessi, Andrea
    Atzori, Maurizio
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 54 : 366 - 377
  • [40] A machine-learning approach to a mobility policy proposal
    Shulajkovska, Miljana
    Smerkol, Maj
    Dovgan, Erik
    Gams, Matjaz
    HELIYON, 2023, 9 (10)