Log-penalized linear regression

被引:0
|
作者
Sweetkind-Singer, JA [1 ]
机构
[1] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regularization penalties are commonly used in linear regression to reduce overfitting [1]. We introduce a log regularization penalty, motivated by a minimum-description-length (MDL) perspective [2] and from ideas in algorithmic complexity [3], and compare it to the more commonly used penalties known as ridge regression and the lasso [1].
引用
收藏
页码:286 / 286
页数:1
相关论文
共 50 条
  • [21] Double Penalized Quantile Regression for the Linear Mixed Effects Model
    Li, Hanfang
    Liu, Yuan
    Luo, Youxi
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (06) : 2080 - 2102
  • [22] Improving logistic regression on the imbalanced data by a novel penalized log-likelihood function
    Zhang, Lili
    Geisler, Trent
    Ray, Herman
    Xie, Ying
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (13) : 3257 - 3277
  • [23] Application of penalized linear regression methods to the selection of environmental enteropathy biomarkers
    Lu, Miao
    Zhou, Jianhui
    Naylor, Caitlin
    Kirkpatrick, Beth D.
    Haque, Rashidul
    Petri, William A., Jr.
    Ma, Jennie Z.
    BIOMARKER RESEARCH, 2017, 5
  • [24] Penalized Linear Regression Methods where the Predictors Have Grouping Effect
    Jiratchayut, Kanyalin
    Bumrungsup, Chinnaphong
    THAILAND STATISTICIAN, 2019, 17 (02): : 212 - 222
  • [25] Generalized l1-penalized quantile regression with linear constraints
    Liu, Yongxin
    Zeng, Peng
    Lin, Lu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [26] COMPLEMENTARY LOG REGRESSION FOR GENERALIZED LINEAR-MODELS
    PIEGORSCH, WW
    AMERICAN STATISTICIAN, 1992, 46 (02): : 94 - 99
  • [27] A new bounded log-linear regression model
    HaiYing Wang
    Nancy Flournoy
    Eloi Kpamegan
    Metrika, 2014, 77 : 695 - 720
  • [28] Application of penalized linear regression methods to the selection of environmental enteropathy biomarkers
    Miao Lu
    Jianhui Zhou
    Caitlin Naylor
    Beth D. Kirkpatrick
    Rashidul Haque
    William A. Petri
    Jennie Z. Ma
    Biomarker Research, 5
  • [29] SHORTEST PREDICTION INTERVALS FOR LOG-LINEAR REGRESSION
    SCOTT, AJ
    SYMONS, MJ
    TECHNOMETRICS, 1971, 13 (04) : 889 - &
  • [30] INTERACTION TERMS IN POISSON AND LOG LINEAR REGRESSION MODELS
    Shang, Shengwu
    Nesson, Erik
    Fan, Maoyong
    BULLETIN OF ECONOMIC RESEARCH, 2018, 70 (01) : E89 - E96