Log-penalized linear regression

被引:0
|
作者
Sweetkind-Singer, JA [1 ]
机构
[1] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regularization penalties are commonly used in linear regression to reduce overfitting [1]. We introduce a log regularization penalty, motivated by a minimum-description-length (MDL) perspective [2] and from ideas in algorithmic complexity [3], and compare it to the more commonly used penalties known as ridge regression and the lasso [1].
引用
收藏
页码:286 / 286
页数:1
相关论文
共 50 条
  • [1] Compressed and Penalized Linear Regression
    Homrighausen, Darren
    McDonald, Daniel J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 309 - 322
  • [2] Efficient Penalized Estimation for Linear Regression Model
    Mao, Guangyu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (07) : 1436 - 1449
  • [3] Robust penalized estimators for functional linear regression
    Kalogridis, Ioannis
    Van Aelst, Stefan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [4] A NOTE ON LOG-LINEAR REGRESSION
    HEIEN, DM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (323) : 1034 - &
  • [5] Sparse brain network using penalized linear regression
    Lee, Hyekyoung
    Lee, Dong Soo
    Kang, Hyejin
    Kim, Boong-Nyun
    Chung, Moo K.
    MEDICAL IMAGING 2011: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2011, 7965
  • [6] Compound Identification Using Penalized Linear Regression on Metabolomics
    Liu, Ruiqi
    Wu, Dongfeng
    Zhang, Xiang
    Kim, Seongho
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 373 - 388
  • [7] Penalized Estimation of a Finite Mixture of Linear Regression Models
    Rocci, Roberto
    Di Mari, Roberto
    Gattone, Stefano Antonio
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 326 - 333
  • [8] Sufficient conditions for the oracle property in penalized linear regression
    Kwon, Sunghoon
    Moon, Hyeseong
    Chang, Jaeho
    Lee, Sangin
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (02) : 279 - 293
  • [9] lq Sparsity Penalized Linear Regression With Cyclic Descent
    Marjanovic, Goran
    Solo, Victor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1464 - 1475
  • [10] Penalized function-on-function linear quantile regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Saricam, Semanur
    COMPUTATIONAL STATISTICS, 2025, 40 (01) : 301 - 329