The structural basis for agonist and partial agonist action on a β1-adrenergic receptor

被引:505
|
作者
Warne, Tony [1 ]
Moukhametzianov, Rouslan [1 ]
Baker, Jillian G. [2 ]
Nehme, Rony [1 ]
Edwards, Patricia C. [1 ]
Leslie, Andrew G. W. [1 ]
Schertler, Gebhard F. X. [1 ]
Tate, Christopher G. [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 0QH, England
[2] Univ Nottingham, Sch Med, Inst Cell Signalling, Queens Med Ctr, Nottingham NG7 2UH, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
PROTEIN-COUPLED RECEPTOR; BETA-ADRENERGIC-RECEPTORS; HIGH-AFFINITY BINDING; BETA(2)-ADRENERGIC RECEPTOR; CRYSTAL-STRUCTURE; LIGAND-BINDING; AMINO-ACID; ACTIVATION; CRYSTALLOGRAPHY; CRYSTALLIZATION;
D O I
10.1038/nature09746
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
beta-adrenergic receptors (beta ARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline(1,2). Synthetic ligands have been developed that either activate or inhibit beta ARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermo-stabilized turkey (Meleagris gallopavo) beta(1)-adrenergic receptor (beta(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 angstrom contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering(3)). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.
引用
收藏
页码:241 / 244
页数:4
相关论文
共 50 条
  • [11] α-1-Adrenergic Receptor Agonist Activity of Clinical α-Adrenergic Receptor Agonists Interferes with α-2-Mediated Analgesia
    Gil, Daniel W.
    Cheevers, Cynthia V.
    Kedzie, Karen M.
    Manlapaz, Cynthia A.
    Rao, Sandhya
    Tang, Elaine
    Donello, John E.
    ANESTHESIOLOGY, 2009, 110 (02) : 401 - 407
  • [12] Effects of α1-adrenergic receptor agonist on the proliferation of embryonic neural progenitor cells in vitro
    Hiramoto, T
    Kanda, Y
    Hara, Y
    Hinata, T
    Watanabe, Y
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2006, 100 : 257P - 257P
  • [13] Regulation of cardiac caveolae in rat hypertrophied cardiomyocytes induced by α1-adrenergic receptor agonist
    Kikuchi, T
    Oka, N
    Koga, A
    Nakaura, H
    Iwami, G
    Nishi, H
    Nakata, M
    Kondo, T
    Inokuchi, T
    Imaizumi, T
    CIRCULATION, 2000, 102 (18) : 197 - 197
  • [14] Resistance of the human β1-adrenergic receptor to agonist-induced ubiquitination -: A mechanism for impaired receptor degradation
    Liang, W
    Fishman, PH
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) : 46882 - 46889
  • [15] Partial agonist activity of α1-adrenergic receptor antagonists for chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3
    Gao, Xianlong
    Abdelkarim, Hazem
    Albee, Lauren J.
    Volkman, Brian F.
    Gaponenko, Vadim
    Majetschak, Matthias
    PLOS ONE, 2018, 13 (09):
  • [16] Low affinity of β1-adrenergic receptor for β-arrestins explains the resistance to agonist-induced internalization
    Shiina, T
    Nagao, T
    Kurose, H
    LIFE SCIENCES, 2001, 68 (19-20) : 2251 - 2257
  • [17] Molecular Basis for Benzodiazepine Agonist Action at the Type 1 Cholecystokinin Receptor
    Harikumar, Kaleeckal G.
    Cawston, Erin E.
    Lam, Polo C. H.
    Patil, Achyut
    Orry, Andrew
    Henke, Brad R.
    Abagyan, Ruben
    Christopoulos, Arthur
    Sexton, Patrick M.
    Miller, Laurence J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (29) : 21082 - 21095
  • [18] Structural basis of inverse agonist activity of AT1 receptor blockers
    Akazawa, Hiroshi
    Yasuda, Takanori
    Qin, Yingje
    Li, Zhi
    Zou, Yunzeng
    Komuro, Issei
    JOURNAL OF CARDIAC FAILURE, 2006, 12 (08) : S152 - S152
  • [19] Mechanism of gating and partial agonist action in the glycine receptor
    Yu, Jie
    Zhu, Hongtao
    Lape, Remigijus
    Greiner, Timo
    Du, Juan
    Lu, Wei
    Sivilotti, Lucia
    Gouaux, Eric
    CELL, 2021, 184 (04) : 957 - +
  • [20] Amino acid 49 polymorphisms of the human β1-adrenergic receptor affect agonist-promoted trafficking
    Rathz, DA
    Brown, KM
    Kramer, LA
    Liggett, SB
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2002, 39 (02) : 155 - 160