Isometric Gaussian Process Latent Variable Model for Dissimilarity Data

被引:0
|
作者
Jorgensen, Martin [1 ]
Hauberg, Soren [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Tech Univ Denmark, Dept Math & Comp Sci, Lyngby, Denmark
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled locally as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference based on observations of pairwise distances. We demonstrate how the new model can encode invariances in the learned manifolds.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Generative classification model for categorical data based on latent Gaussian process
    Lv, Fengmao
    Yang, Guowu
    Zhu, William
    Liu, Chuan
    PATTERN RECOGNITION LETTERS, 2017, 92 : 56 - 61
  • [42] Interpretable multi-source data fusion through Latent Variable Gaussian Process
    Ravi, Sandipp Krishnan
    Comlek, Yigitcan
    Pathak, Arjun
    Gupta, Vipul
    Umretiya, Rajnikant
    Hoffman, Andrew
    Pilania, Ghanshyam
    Pandita, Piyush
    Ghosh, Sayan
    Mckeever, Nathaniel
    Chen, Wei
    Wang, Liping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [43] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [44] Multi-kernel Gaussian process latent variable regression model for high-dimensional sequential data modeling
    Zhu, Ziqi
    Zhang, Jiayuan
    Zou, Jixin
    Deng, Chunhua
    NEUROCOMPUTING, 2019, 348 : 3 - 15
  • [45] Non-Linear Regression for Bag-of-Words Data via Gaussian Process Latent Variable Set Model
    Yoshikawa, Yuya
    Iwata, Tomoharu
    Sawada, Hiroshi
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3129 - 3135
  • [46] Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding
    Luo, Della Daiyi
    Giri, Bapun
    Diba, Kamran
    Kemere, Caleb
    NEURAL COMPUTATION, 2024, 36 (08) : 1449 - 1475
  • [47] Real-time body tracking using a Gaussian process latent variable model
    Hou, Shaobo
    Galata, Aphrodite
    Caillette, Fabrice
    Thacker, Neil
    Bromiley, Paul
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 928 - +
  • [48] Voice Conversion Using A Two-Factor Gaussian Process Latent Variable Model
    Sun, Xinjian
    Zhang, Xiongwei
    Cao, Tieyong
    Yang, Jibin
    Sun, Jian
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (12A): : 318 - 324
  • [49] Harmonization Shared Autoencoder Gaussian Process Latent Variable Model With Relaxed Hamming Distance
    Li, Jinxing
    Zhang, Bob
    Lu, Guangming
    Xu, Yong
    Wu, Feng
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 5093 - 5107
  • [50] Gaussian process latent variable model factorization for context-aware recommender systems
    Huang, Wei
    Xu, Richard Yi Da
    PATTERN RECOGNITION LETTERS, 2021, 151 : 281 - 287