ABSORPTION COEFFICIENTS OF QUANTUM DOT INTERMEDIATE BAND MATERIAL WITH NEGLIGIBLE VALENCE BAND OFFSETS

被引:1
|
作者
Dahal, Som N. [1 ]
Ban, Keun-Yong [1 ]
Honsberg, Christiana [1 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE | 2010年
关键词
D O I
10.1109/PVSC.2010.5615908
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar cells with quantum dot nanostructure absorbing medium have a potential to overcome single junction limit and achieve the solar energy conversion efficiency as high as 63%. The confined energy states in quantum dots can mediate the absorption of photons with energy lower than the band gap of the barrier material. Closely spaced array of quantum dots (QDs) can form a mini band due to electronic coupling of the confined states among the neighboring dots. Absorption properties of the quantum dot nanostructaures are different from that of a bulk material. For the detailed balance efficiency calculations, the absorption coefficients of the QD nanostructures are required for realistic QD structures. After finding out material combinations with negligible valence band offset for quantum dot intermediate band solar cells(QDIBSCs), present work is focused on the calculation of absorption coefficients of QD arrays. The confined electronic states are calculated with the effective mass theory for single and coupled quantum dots. The electronic coupling of the ground states of an array of quantum dots is calculated for negligible valence band offset material combinations (especially InAs dots in GaAs(0.84)Sb(0.16) matrix grown on [001] GaAs substrate). The intermediate bandwidth vs the veretical interdot separation is presented. For some suitable interedot separation, the absorption coefficients are calculated for valence band to intermediate band, Intermediate band to conduction band transitions.
引用
收藏
页码:1797 / 1799
页数:3
相关论文
共 50 条
  • [31] STAGGERED BAND ALIGNMENTS IN ALGAAS HETEROJUNCTIONS AND THE DETERMINATION OF VALENCE-BAND OFFSETS
    DAWSON, P
    WILSON, BA
    TU, CW
    MILLER, RC
    APPLIED PHYSICS LETTERS, 1986, 48 (08) : 541 - 543
  • [32] VALENCE-BAND PHOTOEMISSION FROM A QUANTUM-DOT SYSTEM
    COLVIN, VL
    ALIVISATOS, AP
    TOBIN, JG
    PHYSICAL REVIEW LETTERS, 1991, 66 (21) : 2786 - 2789
  • [33] The effect of band offsets in quantum dots
    Panchak, A.
    Luque, A.
    Vlasov, A.
    Andreev, V.
    Marti, A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 : 180 - 184
  • [34] Modelling of Intermediate Band Solar Cells: Quantum Dot or Impurity Band - The Effect of Inhomogeneous Broadening
    Rorison, Judy
    Wang, Joey
    2014 16TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2014,
  • [35] Valence-band offsets at strained semiconductor heterojunctions
    Xie, Jianjun
    Lu, Dong
    Proceedings of SPIE - The International Society for Optical Engineering, 1994, 2364 : 284 - 288
  • [36] Intraband absorption in finite, inhomogeneous quantum dot stacks for intermediate band solar cells: Limitations and optimization
    Bragar, Igor
    Machnikowski, Pawel
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
  • [37] Realistic quantum design of silicon quantum dot intermediate band solar cells
    Hu, Weiguo
    Igarashi, Makoto
    Lee, Ming-Yi
    Li, Yiming
    Samukawa, Seiji
    NANOTECHNOLOGY, 2013, 24 (26)
  • [38] Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells
    C. M. Imperato
    G. A. Ranepura
    L. I. Deych
    I. L. Kuskovsky
    Journal of Electronic Materials, 2018, 47 : 4325 - 4331
  • [39] Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells
    Imperato, C. M.
    Ranepura, G. A.
    Deych, L. I.
    Kuskovsky, I. L.
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (08) : 4325 - 4331
  • [40] Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets
    Zech, E. S.
    Chang, A. S.
    Martin, A. J.
    Canniff, J. C.
    Lin, Y. H.
    Millunchick, J. M.
    Goldman, R. S.
    APPLIED PHYSICS LETTERS, 2013, 103 (08)