Multiscale clustering of nonparametric regression curves

被引:10
|
作者
Vogt, Michael [1 ]
Linton, Oliver [2 ,3 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] Univ Cambridge, Cambridge, England
[3] Fac Econ, Austin Robinson Bldg,Sidgwick Ave, Cambridge CB3 9DD, England
关键词
Clustering of nonparametric curves; Nonparametric regression; Multiscale statistics; Multiple time series; PANEL-DATA MODELS; GROUPED PATTERNS; INFERENCE;
D O I
10.1016/j.jeconom.2020.01.020
中图分类号
F [经济];
学科分类号
02 ;
摘要
In a wide range of modern applications, one observes a large number of time series rather than only a single one. It is often natural to suppose that there is some group structure in the observed time series. When each time series is modeled by a nonparametric regression equation, one may in particular assume that the observed time series can be partitioned into a small number of groups whose members share the same nonparametric regression function. We develop a bandwidth-free clustering method to estimate the unknown group structure from the data. More precisely speaking, we construct multiscale estimators of the unknown groups and their unknown number which are free of classical bandwidth or smoothing parameters. In the theoretical part of the paper, we analyze the statistical properties of our estimators. Our theoretical results are derived under general conditions which allow the data to be dependent both in time series direction and across different time series. The technical analysis of the paper is complemented by simulated and real-data examples. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 325
页数:21
相关论文
共 50 条
  • [31] Adaptive Nonparametric Clustering
    Efimov, Kirill
    Adamyan, Larisa
    Spokoiny, Vladimir
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4875 - 4892
  • [32] Nonparametric predictive regression
    Kasparis, Ioannis
    Andreou, Elena
    Phillips, Peter C. B.
    JOURNAL OF ECONOMETRICS, 2015, 185 (02) : 468 - 494
  • [33] Quantization for nonparametric regression
    Gyoerfi, Laszlo
    Wegkamp, Marten
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 867 - 874
  • [34] Weighted nonparametric regression
    Delicado, P
    delRio, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (12) : 2983 - 2998
  • [35] NONPARAMETRIC BAYESIAN REGRESSION
    BARRY, D
    ANNALS OF STATISTICS, 1986, 14 (03): : 934 - 953
  • [36] NONPARAMETRIC INSTRUMENTAL REGRESSION
    Darolles, S.
    Fan, Y.
    Florens, J. P.
    Renault, E.
    ECONOMETRICA, 2011, 79 (05) : 1541 - 1565
  • [37] A nonparametric regression method
    Huang, ML
    Brill, PH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (03) : 1467 - 1475
  • [38] Introduction to nonparametric regression
    Stoimenova, Eugenia
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 511 - 511
  • [39] NONPARAMETRIC MODAL REGRESSION
    Chen, Yen-Chi
    Genovese, Christopher R.
    Tibshirani, Ryan J.
    Wasserman, Larry
    ANNALS OF STATISTICS, 2016, 44 (02): : 489 - 514
  • [40] CONSISTENT NONPARAMETRIC REGRESSION
    STONE, CJ
    BICKEL, PJ
    BREIMAN, L
    BRILLINGER, DR
    BRUNK, HD
    PIERCE, DA
    CHERNOFF, H
    COVER, TM
    COX, DR
    EDDY, WF
    HAMPEL, F
    OLSHEN, RA
    PARZEN, E
    ROSENBLATT, M
    SACKS, J
    WAHBA, G
    ANNALS OF STATISTICS, 1977, 5 (04): : 595 - 645