Machine learning based decline curve analysis for short-term oil production forecast

被引:30
|
作者
Tadjer, Amine [1 ]
Hong, Aojie [1 ]
Bratvold, Reidar B. [1 ]
机构
[1] Univ Stavanger, Dept Energy Resources, Stavanger, Norway
关键词
Deep learning; probabilistic modeling; production forecasting; time series analysis; MODEL;
D O I
10.1177/01445987211011784
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Traditional decline curve analyses (DCAs), both deterministic and probabilistic, use specific models to fit production data for production forecasting. Various decline curve models have been applied for unconventional wells, including the Arps model, stretched exponential model, Duong model, and combined capacitance-resistance model. However, it is not straightforward to determine which model should be used, as multiple models may fit a dataset equally well but provide different forecasts, and hastily selecting a model for probabilistic DCA can underestimate the uncertainty in a production forecast. Data science, machine learning, and artificial intelligence are revolutionizing the oil and gas industry by utilizing computing power more effectively and efficiently. We propose a data-driven approach in this paper to performing short term predictions for unconventional oil production. Two states of the art level models have tested: DeepAR and used Prophet time series analysis on petroleum production data. Compared with the traditional approach using decline curve models, the machine learning approach can be regarded as" model-free" (non-parametric) because the pre-determination of decline curve models is not required. The main goal of this work is to develop and apply neural networks and time series techniques to oil well data without having substantial knowledge regarding the extraction process or physical relationship between the geological and dynamic parameters. For evaluation and verification purpose, The proposed method is applied to a selected well of Midland fields from the USA. By comparing our results, we can infer that both DeepAR and Prophet analysis are useful for gaining a better understanding of the behavior of oil wells, and can mitigate over/underestimates resulting from using a single decline curve model for forecasting. In addition, the proposed approach performs well in spreading model uncertainty to uncertainty in production forecasting; that is, we end up with a forecast which outperforms the standard DCA methods.
引用
收藏
页码:1747 / 1769
页数:23
相关论文
共 50 条
  • [31] Short-term nodal load forecasting based on machine learning techniques
    Lu, Dan
    Zhao, Dongbo
    Li, Zuyi
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (09):
  • [32] Short-Term Load Forecasting Based on Improved Extreme Learning Machine
    Li, Jie
    Song, Zhongyou
    Zhong, Yuanhong
    Zhang, Zhaoyuan
    Li, Jianhong
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 584 - 588
  • [33] Short-Term Traffic Flow Prediction of Highway Based on Machine Learning
    Ou, Shuyou
    Li, Feng
    CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, 2021, : 248 - 256
  • [34] Machine Learning-Based Short-Term Composite Load Forecasting
    Tomasevic, Dzenana
    Konjic, Tatjana
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [35] Analysis of correlation between meteorological factors and short-term load forecasting based on machine learning
    Xu Fei
    Wu Zhigang
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 4449 - 4454
  • [36] Application of Machine Learning Models for Short-term Drought Analysis Based on Streamflow Drought Index
    Niazkar, Majid
    Piraei, Reza
    Zakwan, Mohammad
    WATER RESOURCES MANAGEMENT, 2025, 39 (01) : 91 - 108
  • [37] Sky Images for Short-Term Solar Irradiance Forecast: A Comparative Study of Linear Machine Learning Models
    Shirazi, Elham
    Gordon, Ivan
    Reinders, Angele
    Catthoor, Francky
    IEEE JOURNAL OF PHOTOVOLTAICS, 2024, 14 (04): : 691 - 698
  • [38] Analysis of classical and machine learning based short-term and mid-term load forecasting for smart grid
    Rai, Sneha
    De, Mala
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2021, 40 (09) : 821 - 839
  • [39] McDonnell aircraft strike brings 'short-term' production decline
    Velocci, AL
    AVIATION WEEK & SPACE TECHNOLOGY, 1996, 145 (09): : 72 - 73
  • [40] Short-Term Traffic Flow Forecast Based on Parallel Long Short-Term Memory Neural Network
    Qiao, Songlin
    Sun, Rencheng
    Fan, Guangpeng
    Liu, Ji
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 253 - 257