A rough set paradigm for unifying rough set theory and fuzzy set theory

被引:0
|
作者
Polkowski, L
机构
[1] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[2] Univ Warmia & Mazury, Dept Math & Comp Sci, PL-10561 Olsztyn, Poland
关键词
rough set theory; fuzzy set theory; rough mereology; rough inclusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this plenary address, we would like to discuss rough inclusions defined in Rough Mereology, a joint idea with A. Skowron, as a basis for common models for rough as well as fuzzy set theories. We would like to justify the point of view that tolerance (or, similarity) is the leading motif common to both theories and in this area paths between the two lie.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 50 条
  • [41] Efficient Rough Set Theory Merging
    Grabowski, Adam
    FUNDAMENTA INFORMATICAE, 2014, 135 (04) : 371 - 385
  • [42] A matroidal approach to rough set theory
    Tang, Jianguo
    She, Kun
    Min, Fan
    Zhu, William
    THEORETICAL COMPUTER SCIENCE, 2013, 471 : 1 - 11
  • [43] Two operators in rough set theory
    Kong, Zhi
    Gao, Liqun
    Wang, Lifu
    Li, Yang
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 1058 - 1062
  • [44] Data mining and rough set theory
    Grzymala-Busse, JW
    Ziarko, W
    COMMUNICATIONS OF THE ACM, 2000, 43 (04) : 108 - 109
  • [45] Rough Set Theory in Product Design
    Wang, Wei
    Yin, Shaohong
    Han, Junjie
    Li, Lingling
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2009, : 183 - 186
  • [46] Rough Set Theory on Topological Spaces
    Anitha, K.
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 69 - +
  • [47] α-RST:: a generalization of rough set theory
    Quafafou, M
    INFORMATION SCIENCES, 2000, 124 (1-4) : 301 - 316
  • [48] More on Continuity in Rough Set Theory
    Sunyeekhan, Gun
    Noonoi, Puntitra
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (01): : 197 - 202
  • [49] Rough set theory for topological spaces
    Lashin, EF
    Kozae, AM
    Khadra, AAA
    Medhat, T
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2005, 40 (1-2) : 35 - 43
  • [50] Morphisms in Binary Rough Set Theory
    Zheng, Tingting
    FUNDAMENTA INFORMATICAE, 2020, 172 (04) : 413 - 434