Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties

被引:3
|
作者
Bergmueller, Simon [1 ]
Kaserer, Lukas [1 ]
Fuchs, Lorenz [1 ]
Braun, Jakob [1 ]
Weinberger, Nikolaus [2 ]
Letofsky-Papst, Ilse [3 ,4 ]
Leichtfried, Gerhard [1 ]
机构
[1] Univ Innsbruck, Fac Engn Sci, Dept Mechatron, Mat Sci, Technikerstr 13, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Fac Engn Sci, Dept Struct Engn & Mat Sci, Mat Technol, Technikerstr 13, A-6020 Innsbruck, Austria
[3] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, Steyrergasse 17, A-8010 Graz, Austria
[4] Graz Univ Technol, Ctr Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria
关键词
LPBF; High carbon steel; High-speed steel; Additive manufacturing; Heat treatment; Microstructure; HIGH-SPEED STEELS; RESIDUAL-STRESS; BEHAVIOR; EVOLUTION; CARBIDE; S390;
D O I
10.1016/j.heliyon.2022.e10171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, high-alloy tool steel S390 was processed crack-free and dense for the first time using laser powder bed fusion (LPBF). The resulting mechanical properties and microstructure of the LPBF steel parts were investigated. High-alloy tool steels, such as high-performance high-speed Boehler S390 steel (containing 1.64 wt% C and W, Mo, V, Co, and Cr in the ratio 10:2:5:8:5 wt%), are prone to cracking when processed using LPBF because these steels have high carbon and carbide-forming alloying elements content. Cracks are induced by thermal stresses and solid-phase transformation, combined with weak grain boundaries caused by segregated primary carbides. Substrate plate heating reduces thermal stresses and enables in situ heat treatment, thus modulating solid-phase transformation and carbide precipitation and preventing cracking during cooling. The resulting microstructure, precipitations, and mechanical properties of the as-built LPBF specimens, which were in situ heat-treated at 800 degrees C, and the conventionally post-heat-treated specimens were assessed using optical microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron backscatter diffraction, X-ray diffraction, hardness testing, bending testing, and density measurement. In situ heat treatment impacts microstructure, precipitation behavior, and solid-phase transformation, causing a change in the microstructure of the material along the build direction due to different thermal histories. The as-built specimens exhibit a hardness gradient along the build direction of 500 HV1 to 800 HV1 in the top layer. The average bending strength is 2500 MPa, measured from the tensile stresses on the harder side and the compressive stresses on the softer side. Conventional post-heat treatment yields a mean hardness of 610 HV1 and a mean bending strength of 2800 MPa.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Laser powder bed fusion of a tungsten-nickel-ferrum alloy via in-situ alloying: Densification, microstructure, and mechanical properties
    Song, Changhui
    Huang, Junfei
    Yang, Yongqiang
    Han, Changjun
    POWDER TECHNOLOGY, 2022, 406
  • [42] Microstructure and mechanical properties of a modified 316 austenitic stainless steel alloy manufactured by laser powder bed fusion
    Svahn, F.
    Mishra, P.
    Edin, E.
    Akerfeldt, P.
    Antti, M. -l.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1452 - 1462
  • [43] High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): Coordination of laser formability, microstructure evolution, and mechanical properties
    Liu, He
    Gu, Dongdong
    Shi, Keyu
    Zhang, Han
    Zhang, Yijuan
    Li, Linxuan
    Li, Jingyang
    Qi, Junfeng
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 332
  • [44] Achieving exceptional wear resistance in a crack-free high-carbon tool steel fabricated by laser powder bed fusion without pre-heating
    Kosiba, Konrad
    Wolf, Daniel
    Bonisch, Matthias
    Neufeld, Kai
    Huehne, Ruben
    Gustmann, Tobias
    Bednarcik, Jozef
    Chen, Hongyu
    Han, Xiaoliang
    Hoffmann, Volker
    Beyer, Lukas
    Kuehn, Uta
    Scudino, Sergio
    Giebeler, Lars
    Hufenbach, Julia K.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 156 : 1 - 19
  • [45] Microstructure and mechanical properties of Haynes 188 alloy manufactured by laser powder bed fusion
    Liu, Yang
    Huang, Zhifeng
    Zhang, Chi
    Lu, Jiaqi
    Ouyang, Ni
    Shen, Qiang
    Huang, Aijun
    Chen, Fei
    MATERIALS CHARACTERIZATION, 2024, 211
  • [46] Microstructure and mechanical properties of rene 41 alloy manufactured by laser powder bed fusion
    Atabay, Sila Ece
    Sanchez-Mata, Oscar
    Muniz-Lerma, Jose Alberto
    Gauvin, Raynald
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773 (773):
  • [47] HEAT TREATMENT EFFECT ON MARAGING STEEL MANUFACTURED BY LASER POWDER BED FUSION TECHNOLOGY: MICROSTRUCTURE AND MECHANICAL PROPERTIES
    Stornelli, Giulia
    Gaggia, Damiano
    Rallini, Marco
    Di Schino, Andrea
    ACTA METALLURGICA SLOVACA, 2021, 27 (03): : 122 - 126
  • [48] Influence of SiC particles on the microstructure and mechanical behaviors of AlMgScZr alloy processed by laser powder bed fusion
    Kang, Chennuo
    Xiong, Xuntao
    Wang, Xiaoming
    Feng, Zhe
    Fan, Wei
    Wang, Yongxia
    Dang, Mingji
    Tan, Hua
    Zhang, Fengying
    Lin, Xin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 910
  • [49] Microstructure and Mechanical Properties of Sintered and Heat-Treated HfNbTaTiZr High Entropy Alloy
    Malek, Jaroslav
    Zyka, Jiri
    Lukac, Frantisek
    Cizek, Jakub
    Kuncicka, Lenka
    Kocich, Radim
    METALS, 2019, 9 (12)
  • [50] The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion
    Marchese, Giulio
    Parizia, Simone
    Rashidi, Masoud
    Saboori, Abdollah
    Manfredi, Diego
    Ugues, Daniele
    Lombardi, Mariangela
    Hryha, Eduard
    Biamino, Sara
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 769