Deep learning ensembles for melanoma recognition in dermoscopy images

被引:328
|
作者
Codella, N. C. F. [1 ]
Nguyen, Q. -B. [1 ]
Pankanti, S. [1 ]
Gutman, D. A. [2 ]
Helba, B. [3 ]
Halpern, A. C. [4 ,5 ]
Smith, J. R. [1 ,6 ]
机构
[1] IBM Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Emory Univ, Dept Neurol, Sch Med, Atlanta, GA 30322 USA
[3] Kitware Inc, Clifton Pk, NY 12065 USA
[4] Mem Sloan Kettering Canc Ctr, Dermatol Serv, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Melanoma Dis Management Team, New York, NY 10065 USA
[6] IBM Res, Thomas J Watson Res Ctr, Multimedia & Vis Team, Yorktown Hts, NY 10598 USA
关键词
PIGMENTED SKIN-LESIONS; EPILUMINESCENCE MICROSCOPY; NEURAL-NETWORK; DIAGNOSIS; CLASSIFICATION; TEXTURE; BORDER;
D O I
10.1147/JRD.2017.2708299
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Melanoma is the deadliest form of skin cancer While curable with early detection, only highly trained specialists are capable of accurately recognizing the disease. As expertise is in limited supply, automated systems capable of identifying disease could save lives, reduce unnecessary biopsies, and reduce costs. Toward this goal, we propose a system that combines recent developments in deep learning with established machine learning approaches, creating ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the detected area and surrounding tissue for melanoma detection. The system is evaluated using the largest publicly available benchmark dataset of dermoscopic images, containing 900 training and 379 testing images. New state-of-the-art performance levels are demonstrated, leading to an improvement in the area under receiver operating characteristic curve of 7.5% (0.843 versus 0.783), in average precision of 4% (0.649 versus 0.624), and in specificity measured at the clinically relevant 95% sensitivity operating point 2.9 times higher than the previous state of the art (36.8% specificity compared to 12.5%). Compared to the average of eight, expert dermatologists on a subset of 100 test images, the proposed system produces a higher accuracy (76% versus 70.5%), and specificity (62% versus 59%) evaluated at an equivalent sensitivity (82%).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images
    Soylemez, Omer Faruk
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (06) : 1929 - 1943
  • [32] Deep Learning Model for Text Recognition in Images
    Shrivastava, Anupriya
    Amudha, J.
    Gupta, Deepa
    Sharma, Kshitij
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [33] Automatic melanoma detection and segmentation in dermoscopy images using deep RetinaNet and conditional random fields
    Hafeez ur Rehman
    Nudrat Nida
    Syed Adnan Shah
    Wakeel Ahmad
    Muhammad Imran Faizi
    Syed Muhammad Anwar
    Multimedia Tools and Applications, 2022, 81 : 25765 - 25785
  • [34] Automatic melanoma detection and segmentation in dermoscopy images using deep RetinaNet and conditional random fields
    Rehman, Hafeez Ur
    Nida, Nudrat
    Shah, Syed Adnan
    Ahmad, Wakeel
    Faizi, Muhammad Imran
    Anwar, Syed Muhammad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) : 25765 - 25785
  • [35] Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases
    Abunadi, Ibrahim
    Senan, Ebrahim Mohammed
    ELECTRONICS, 2021, 10 (24)
  • [36] A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images
    Alenezi, Fayadh
    Armghan, Ammar
    Polat, Kemal
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [37] Naive Bayes Learning of Dermoscopy Images
    Surowka, Grzegorz
    Ogorzalek, Maciej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2019, PT II, 2019, 11509 : 294 - 304
  • [38] Ensembles of Convolutional Neural Networks for Skin Lesion Dermoscopy Images Classification
    Hilmy, Muhammad Ammarul
    Sasongko, Priyo Sidik
    2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
  • [39] Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models
    Gessert, Nils
    Bengs, Marcel
    Schlaefer, Alexander
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [40] Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods
    Celebi, M. Emre
    Wen, Quan
    Hwang, Sae
    Iyatomi, Hitoshi
    Schaefer, Gerald
    SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) : E252 - E258