Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution

被引:6
|
作者
Ding Yong [1 ]
Yabuta, Kozo [2 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Kwansei Gakuin Univ, Res Ctr Math Sci, Gakuen 2-1, Sanda 6691337, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
singular integrals; Triebel-Lizorkin spaces; rough kernel; surface of revolution; OPERATORS; SUBMANIFOLDS; KERNELS;
D O I
10.1007/s11425-016-5154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundedness of the rough singular integral operator T-Omega,T-psi,T-h along a surface of revolution on the Triebel-Lizorkin space (F) over dot(p,q)(alpha) (R-n) for Omega is an element of H-1(Sn-1) and Omega is an element of L log(+)L(Sn-1) boolean OR (boolean OR(1<q<infinity) B-q((0,0)) (Sn-1)), respectively.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 50 条
  • [21] Boundedness of Fractional Integrals with a Rough Kernel on the Product Triebel-Lizorkin Spaces
    ZHANG HUI-HUI
    YU XIAO
    XIANG ZHONG-QI
    Ji You-qing
    Communications in Mathematical Research, 2017, 33 (03) : 259 - 273
  • [22] Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
    Zhang Chun-jie
    Zhang Yan-dan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (01) : 90 - 100
  • [23] Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
    Chun-jie Zhang
    Yan-dan Zhang
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 90 - 100
  • [24] Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
    ZHANG Chun-jie
    ZHANG Yan-dan
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (01) : 90 - 100
  • [25] A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces
    Liu, Feng
    Wu, Huoxiong
    Zhang, Daiqing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [26] A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces
    Feng Liu
    Huoxiong Wu
    Daiqing Zhang
    Journal of Inequalities and Applications, 2013
  • [27] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Science China Mathematics, 2020, 63 : 907 - 936
  • [28] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    K?z? Yabuta
    ScienceChina(Mathematics), 2020, 63 (05) : 907 - 936
  • [29] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) : 907 - 936
  • [30] BOUNDEDNESS OF ROUGH INTEGRAL OPERATORS ON TRIEBEL-LIZORKIN SPACES
    Al-Qassem, H. M.
    Cheng, L. C.
    Pan, Y.
    PUBLICACIONS MATEMATIQUES, 2012, 56 (02) : 261 - 277