Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction

被引:64
|
作者
Dave, Darpit [1 ]
DeSalvo, Daniel J. [2 ,3 ]
Haridas, Balakrishna [4 ]
McKay, Siripoom [2 ,3 ]
Shenoy, Akhil [2 ]
Koh, Chester J. [2 ,3 ]
Lawley, Mark [1 ]
Erraguntla, Madhav [1 ]
机构
[1] Texas A&M Univ, Dept Ind & Syst Engn, 4021 Emerging Technol Bldg, College Stn, TX 77843 USA
[2] Baylor Coll Med, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Houston, TX 77030 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX USA
来源
关键词
continuous glucose monitoring; feature extraction; machine learning; hypoglycemia prediction; insulin pump data; carbohydrate intake;
D O I
10.1177/1932296820922622
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Hypoglycemia is a serious health concern in youth with type 1 diabetes (T1D). Real-time data from continuous glucose monitoring (CGM) can be used to predict hypoglycemic risk, allowing patients to take timely intervention measures. Methods: A machine learning model is developed for probabilistic prediction of hypoglycemia (<70 mg/dL) in 30- and 60-minute time horizons based on CGM datasets obtained from 112 patients over a range of 90 days consisting of over 1.6 million CGM values under normal living conditions. A comprehensive set of features relevant for hypoglycemia are developed and a parsimonious subset with most influence on predicting hypoglycemic risk is identified. Model performance is evaluated both with and without contextual information on insulin and carbohydrate intake. Results: The model predicted hypoglycemia with >91% sensitivity for 30- and 60-minute prediction horizons while maintaining specificity >90%. Inclusion of insulin and carbohydrate data yielded performance improvement for 60-minute but not for 30-minute predictions. Model performance was highest for nocturnal hypoglycemia (similar to 95% sensitivity). Shortterm (less than one hour) and medium-term (one to four hours) features for good prediction performance are identified. Conclusions: Innovative feature identification facilitated high performance for hypoglycemia risk prediction in pediatric youth with T1D. Timely alerts of impending hypoglycemia may enable proactive measures to avoid severe hypoglycemia and achieve optimal glycemic control. The model will be deployed on a patient-facing smartphone application in an upcoming pilot study.
引用
收藏
页码:842 / 855
页数:14
相关论文
共 50 条
  • [21] Color and Shape Feature-based Detection of Speed Sign in Real-time
    Kim, Seunggyu
    Kim, Seongdo
    Uh, Youngjung
    Byun, Hyeran
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 663 - 666
  • [22] Feature-Based Monocular Real-Time Localization for UAVs in Indoor Environment
    Zhang, Yu
    Cai, Zhihao
    Zhao, Jiang
    You, Zhenxing
    Wang, Yingxun
    PROCEEDINGS OF 2017 CHINESE INTELLIGENT AUTOMATION CONFERENCE, 2018, 458 : 357 - 366
  • [23] Improvements in real-time feature-based license plate character recognition
    Ko, MA
    Kim, YM
    ON THE CONVERGENCE OF BIO-INFORMATION-, ENVIRONMENTAL-, ENERGY-, SPACE- AND NANO-TECHNOLOGIES, PTS 1 AND 2, 2005, 277-279 : 355 - 360
  • [24] Real-time Prediction of Styrene Production Volume based on Machine Learning Algorithms
    Wu, Yikai
    Hou, Fang
    Cheng, Xiaopei
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, ICDM 2017, 2017, 10357 : 301 - 312
  • [25] Real-time Machine Learning Prediction of an Agent-Based Model for Urban Decision-making
    Zhang, Yan
    Grignard, Arnaud
    Lyons, Kevin
    Aubuchon, Alexander
    Larson, Kent
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 2171 - 2173
  • [26] Real-time motion prediction of space tumbling targets based on machine learning
    Yu M.
    Luo J.
    Wang M.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (02):
  • [27] Drought Prediction Based on Feature-Based Transfer Learning and Time Series Imaging
    Tian, Wan
    Wu, Jiujing
    Cui, Hengjian
    Hu, Tao
    IEEE ACCESS, 2021, 9 : 101454 - 101468
  • [28] A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care
    Li, Xiang
    Xu, Xiao
    Xie, Fei
    Xu, Xian
    Sun, Yuyao
    Liu, Xiaoshuang
    Jia, Xiaoyu
    Kang, Yanni
    Xie, Lixin
    Wang, Fei
    Xie, Guotong
    CRITICAL CARE MEDICINE, 2020, 48 (10) : E884 - E888
  • [29] Real-Time Lithology Prediction at the Bit Using Machine Learning
    Burak, Tunc
    Sharma, Ashutosh
    Hoel, Espen
    Kristiansen, Tron Golder
    Welmer, Morten
    Nygaard, Runar
    GEOSCIENCES, 2024, 14 (10)
  • [30] Streaming Machine Learning For Real-time Gas Concentration Prediction
    Wu, Haibo
    Shi, Shiliang
    Nian, Qifeng
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 42 - 46