Fokker-Planck equation for lattice deposition models

被引:12
|
作者
Baggio, C
Vardavas, R
Vvedensky, DD
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[2] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 04期
关键词
D O I
10.1103/PhysRevE.64.045103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An asymptotically exact Fokker-Planck equation for the height fluctuations of lattice deposition models is derived from a Van Kampen expansion of the master equation. Using an Edwards-Wilkinson-type model as an example, the solution of the equivalent Langevin equation reproduces the surface roughness and lateral height correlations obtained with kinetic Monte Carlo (KMC) simulations. Our discrete equations of motion thereby provide an exact analytic and computational alternative to KMC simulations of these models.
引用
收藏
页码:4 / 451034
页数:4
相关论文
共 50 条
  • [21] EXTENSION OF FOKKER-PLANCK EQUATION
    PRICE, JC
    PHYSICS OF FLUIDS, 1966, 9 (12) : 2408 - &
  • [22] PROPERTY OF FOKKER-PLANCK EQUATION
    COMBIS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 473 - 476
  • [23] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [24] COVARIANCE OF THE FOKKER-PLANCK EQUATION
    GARRIDO, L
    PHYSICA A, 1980, 100 (01): : 140 - 152
  • [25] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [26] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [27] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [28] INPAINTING WITH FOKKER-PLANCK EQUATION
    Ignat, Anca
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (03): : 225 - 233
  • [29] FOKKER-PLANCK EQUATION FOR NONEQUILIBRIUM COMPETING DYNAMIC-MODELS
    MUNOZ, MA
    GARRIDO, PL
    PHYSICAL REVIEW E, 1994, 50 (04): : 2458 - 2466
  • [30] Application of the fokker-planck equation to data assimilation into hydrodynamical models
    Belyaev K.
    Meyers S.D.
    O'Brien J.J.
    Journal of Mathematical Sciences, 2000, 99 (4) : 1393 - 1402