Applying radiomics and machine learning on PET images to predict lung metastases in soft tissue sarcoma patients

被引:0
|
作者
Shiri, I. [1 ]
Rahmim, A. [2 ,3 ]
Abdollahi, H. [1 ]
Geramifar, P. [4 ]
Bitarafan-Rajabi, A. [1 ,5 ]
机构
[1] Iran Univ Med Sci, Sch Med, Dept Med Phys, Tehran, Iran
[2] Johns Hopkins Univ, Dept Radiol, Baltimore, MD USA
[3] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[4] Univ Tehran Med Sci, Shariati Hosp, Res Ctr Nucl Med, Tehran, Iran
[5] Iran Univ Med Sci, Cardiovasc Intervent Res Ctr, Rajaie Cardiovasc Med Res Ctr, Tehran, Iran
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-0727
引用
收藏
页码:S741 / S741
页数:1
相关论文
共 50 条
  • [41] Deep learning to segment liver metastases on CT images: impact on a radiomics method to predict response to chemotherapy
    Giannini, Valentina
    Defeudis, Arianna
    Rosati, Samanta
    Cappello, Giovanni
    Vassallo, Lorenzo
    Mazzetti, Simone
    Panic, Jovana
    Regge, Daniele
    Balestra, Gabriella
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2020,
  • [42] Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning
    Hermessi, Haithem
    Mourali, Olfa
    Zagrouba, Ezzeddine
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 120 : 116 - 127
  • [43] Prognostic Value of Quantitative [18F]FDG-PET Features in Patients with Metastases from Soft Tissue Sarcoma
    Kalisvaart, Gijsbert M.
    Grootjans, Willem
    Bovee, Judith V. M. G.
    Gelderblom, Hans
    van der Hage, Jos A.
    van de Sande, Michiel A. J.
    van Velden, Floris H. P.
    Bloem, Johan L.
    de Geus-Oei, Lioe-Fee
    DIAGNOSTICS, 2021, 11 (12)
  • [44] Deep multi-modality collaborative learning for distant metastases predication in PET-CT soft-tissue sarcoma studies
    Peng, Yige
    Bi, Lei
    Guo, Yuyu
    Feng, Dagan
    Fulham, Michael
    Kim, Jinman
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 3685 - 3688
  • [45] Diagnostic Value of Magnetic Resonance Imaging Radiomics and Machine-learning in Grading Soft Tissue Sarcoma: A Mini-review on the Current State
    Schmitz, Fabian
    Sedaghat, Sam
    ACADEMIC RADIOLOGY, 2025, 32 (01) : 311 - 315
  • [46] Utility of PET scan in predicting chemotherapeutic response in soft tissue sarcoma patients
    Mintzer, D. M.
    King, J. J.
    Alavi, A.
    Staddon, A. P.
    Lackman, R. D.
    Hartner, L.
    Fox, E. J.
    Ogilvie, C. M.
    JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (18)
  • [47] Evaluation of FDG PET textural features for the prognosis of soft tissue sarcoma patients
    Lee, Inki
    Im, Hyung-Jun
    Song, Chihwa
    Solaiyappan, Meiyappan
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58
  • [48] Whole-body PET/MR in soft tissue sarcoma (STS) patients
    Richter, Stephan
    Platzek, Ivan
    Beuthien-Baumann, Bettina
    van den Hoff, Joerg
    Laniado, Michael
    Kotzerke, Joerg
    Kroschinsky, Frank
    Ehninger, Gerhard
    Schuler, Markus Kajo
    JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (15)
  • [49] Serum lactate dehydrogenase levels predict the prognosis of patients with soft tissue sarcoma
    Fujibuchi, Taketsugu
    Imai, Hiroshi
    Kidani, Teruki
    Morino, Tadao
    Miura, Hiromasa
    MOLECULAR AND CLINICAL ONCOLOGY, 2022, 16 (03)
  • [50] Applying machine learning to predict depression relapse of bipolar disorder patients
    Dias, R.
    Gomes Borges-Junior, R.
    Salvini, R.
    Goncalves Camilo-Junior, C.
    Lafer, B.
    Nierenberg, A. A.
    Sachs, G. S.
    BIPOLAR DISORDERS, 2018, 20 : 56 - 56