Some ratio inequalities for iterated stochastic integrals

被引:2
|
作者
Yan, LT [1 ]
机构
[1] Toyama Univ, Fac Sci, Dept Math, Toyama 9308555, Japan
关键词
iterated stochastic integrals; Burkholder-Davis-Gundy inequalities; Barlow-Yor inequalities;
D O I
10.1002/mana.200310097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X=(X-t,F-t) be a continuous local martingale with quadratic variation <X> and X-0=0. Define iterated stochastic integrals I-n (X)=(I-n (t, X), F-t), ngreater than or equal to0, inductively by I-n(t,X)=integral(0)(t) In-1(s,X) dX(s) with I-0 (t,X)=1 and I-1 (t,X)=X-t. Let (L-t(x) (X)) be the local time of a continuous local martingale X at x is an element of R. Denote L*(t) (X)=sup(xis an element ofR) L-t(x) (X) and X*=sup(tgreater than or equal to0) \X-t\. In this paper, we shall establish various ratio inequalities for I-n (X). In particular, we show that the inequalities [GRAPHICS hold for 0<p<infinity with some positive constants c(n,p) and C-n,C-P depending only on n and p, where G(t)=log(1+log(1+t)). Furthermore, we also show that for some gammagreater than or equal to0 the inequality [GRAPHICS] holds with some positive constant C-n,C-pgamma depending only on n, p and gamma, where U-n is one of <I-n(X)>(1/2)(infinity) I*(n) (X), and V one of the three random variables X*, (X)(infinity)(1/2) and L*(infinity) (X). (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [41] Generalized retarded nonlinear integral inequalities involving iterated integrals and an application
    Wu-Sheng Wang
    Deqing Huang
    Xuefang Li
    Journal of Inequalities and Applications, 2013
  • [42] SOME INEQUALITIES FOR FRACTIONAL INTEGRALS AND DERIVATIVES
    MARTINEZ, C
    SANZ, M
    MARTINEZ, MD
    DOKLADY AKADEMII NAUK SSSR, 1990, 315 (05): : 1049 - 1051
  • [43] Some Inequalities For Complete Elliptic Integrals
    Yin, Li
    Qi, Feng
    APPLIED MATHEMATICS E-NOTES, 2014, 14 : 193 - 199
  • [44] ON SOME STOCHASTIC OSCILLATORY INTEGRALS
    MALLIAVIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (03): : 295 - 300
  • [45] Inequalities and asymptotics for some moment integrals
    Abi-Khuzam, Faruk
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [46] Some approximations of stochastic θ-integrals
    Lazakovich N.V.
    Stashulenok S.P.
    Yablonskii O.L.
    Lithuanian Mathematical Journal, 1999, 39 (2) : 196 - 202
  • [47] Some Difference Inequalities for Iterated Sums with Applications
    Wang, Wu-Sheng
    Wu, Shanhe
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [48] Generalizations of Some Inequalities for Sugino Integrals
    Daraby, Bayaz
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (03): : 141 - 168
  • [49] Some inequalities for the growth of elliptic integrals
    Qiu, SL
    Vamanamurthy, MK
    Vuorinen, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) : 1224 - 1237
  • [50] Inequalities and asymptotics for some moment integrals
    Faruk Abi-Khuzam
    Journal of Inequalities and Applications, 2017