Sutures and contact homology I

被引:13
|
作者
Colin, Vincent [1 ]
Ghiggini, Paolo [1 ]
Honda, Ko [2 ]
Hutchings, Michael [3 ]
机构
[1] Univ Nantes, CNRS, UMR6629, Lab Math Jean Leray, F-44322 Nantes, France
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
GLUING PSEUDOHOLOMORPHIC CURVES; COMPACTNESS;
D O I
10.2140/gt.2011.15.1749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a relative version of contact homology for contact manifolds with convex boundary and prove basic properties of this relative contact homology. Similar considerations also hold for embedded contact homology.
引用
收藏
页码:1749 / 1842
页数:94
相关论文
共 50 条
  • [21] Local contact homology and applications
    Hryniewicz, Umberto L.
    Macarini, Leonardo
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (02) : 167 - 238
  • [22] Contact homology and homotopy groups of the space of contact structures
    Bourgeois, FD
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (01) : 71 - 85
  • [23] Homology principe (I)
    Zamfir, M
    REVISTA DE CHIMIE, 2001, 52 (05): : 277 - 280
  • [24] S1-Equivariant Symplectic Homology and Linearized Contact Homology
    Bourgeois, Frederic
    Oancea, Alexandru
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (13) : 3849 - 3937
  • [25] Homology principe (I)
    Zamfir, M
    REVISTA DE CHIMIE, 2001, 52 (06): : 321 - 324
  • [26] On torsion in linearized Legendrian contact homology
    Golovko, Roman
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (07)
  • [27] Bordered Floer homology and contact structures
    Alishahi, Akram
    Foldvari, Viktoria
    Hendricks, Kristen
    Licata, Joan
    Petkova, Ina
    Vertesi, Vera
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [28] Heegaard!Floer homology and contact structures
    Ozsváth, P
    Szabó, Z
    DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) : 39 - 61
  • [29] Hamiltonian perturbations in contact Floer homology
    Igor Uljarević
    Jun Zhang
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [30] Perverse sheaves and knot contact homology
    Berest, Yuri
    Eshmatov, Alimjon
    Yeung, Wai-Kit
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (04) : 378 - 399