A larger class of cryptographic Boolean functions via a study of the Maiorana-McFarland construction

被引:0
|
作者
Carlet, C [1 ]
机构
[1] INRIA, F-78153 Le Chesnay, France
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2002, PROCEEDINGS | 2002年 / 2442卷
关键词
resilient functions; nonlinearity; stream ciphers;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Thanks to a new upper bound, we study more precisely the nonlinearities of Maiorana-McFarland's resilient functions. We characterize those functions with optimum nonlinearities and we give examples of functions with high nonlinearities. But these functions have a peculiarity which makes them potentially cryptographically weak. We study a natural super-class of Maiorana-McFarland's class whose elements do not have the same drawback and we give examples of such functions achieving high nonlinearities.
引用
收藏
页码:549 / 564
页数:16
相关论文
共 50 条
  • [21] Correction to: Cubic bent functions outside the completed Maiorana-McFarland class
    Alexandr A. Polujan
    Alexander Pott
    Designs, Codes and Cryptography, 2021, 89 : 1365 - 1366
  • [22] Constructions of (vectorial) bent functions outside the completed Maiorana-McFarland class
    Bapi, A.
    Pasalic, E.
    DISCRETE APPLIED MATHEMATICS, 2022, 314 : 197 - 212
  • [23] Bent Functions in C and D Outside the Completed Maiorana-McFarland Class
    Zhang, F.
    Pasalic, E.
    Cepak, N.
    Wei, Y.
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 298 - 313
  • [24] Efficient implementation of generalized Maiorana–McFarland class of cryptographic functions
    Pasalic E.
    Chattopadhyay A.
    Zhang W.G.
    Journal of Cryptographic Engineering, 2017, 7 (4) : 287 - 295
  • [25] Polynomials With Linear Structure and Maiorana-McFarland Construction
    Charpin, Pascale
    Sarkar, Sumanta
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3796 - 3804
  • [26] Polynomials with Linear Structure and Maiorana-McFarland Construction
    Charpin, Pascale
    Sarkar, Sumanta
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1138 - 1142
  • [27] MODIFYING MAIORANA-MCFARLAND TYPE BENT FUNCTIONS FOR GOOD CRYPTOGRAPHIC PROPERTIES AND EFFICIENT IMPLEMENTATION
    Tang, Deng
    Kavut, Selcuk
    Mandal, Bimal
    Maitra, Subhamoy
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 238 - 256
  • [28] A Lower Bound on the Second-Order Nonlinearity of the Generalized Maiorana-McFarland Boolean Functions
    Gao, Qi
    Tang, Deng
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (12) : 2397 - 2401
  • [29] Minimal linear codes from Maiorana-McFarland functions
    Xu, Guangkui
    Qu, Longjiang
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 65
  • [30] Cheating-Immune Secret Sharing Schemes from Maiorana-McFarland Boolean Functions
    dela Cruz, Romar B.
    Ol, Say
    INFORMATION SECURITY AND CRYPTOLOGY (ICISC 2018), 2019, 11396 : 233 - 247