DYNAMICS OF THE p-ADIC SHIFT AND APPLICATIONS

被引:15
|
作者
Kingsbery, James
Levin, Alex [1 ]
Preygel, Anatoly [1 ]
Silva, Cesar E. [2 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Williams Coll, Williamstown, MA 01267 USA
基金
美国国家科学基金会;
关键词
Measure-preserving; ergodic; Bernoulli; shift; p-adic;
D O I
10.3934/dcds.2011.30.209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is a natural continuous realization of the one-sided Bernoulli shift on the p-adic integers as the map that shifts the coefficients of the p-adic expansion to the left. We study this map's Mahler power series expansion. We prove strong results on p-adic valuations of the coefficients in this expansion, and show that certain natural maps (including many polynomials) are in a sense small perturbations of the shift. As a result, these polynomials share the shift map's important dynamical properties. This provides a novel approach to an earlier result of the authors.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [31] GROWTH OF p-ADIC ENTIRE FUNCTIONS AND APPLICATIONS
    Boussaf, Kamal
    Boutabaa, Abdelbaki
    Escassut, Alain
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 715 - 736
  • [32] p-adic affine dynamical systems and applications
    Fan, AH
    Li, MT
    Yao, JY
    Zhou, D
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (02) : 129 - 134
  • [33] New Applications of the p-Adic Nevanlinna Theory
    Escassut A.
    An T.T.H.
    p-Adic Numbers, Ultrametric Analysis and Applications, 2018, 10 (1) : 12 - 31
  • [34] The Ward property for a P-adic basis and the P-adic integral
    Bongiorno, B
    Di Piazza, L
    Skvortsov, VA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) : 578 - 592
  • [35] p-adic Welch Bounds and p-adic Zauner Conjecture
    Krishna, K. M.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (03) : 264 - 274
  • [36] p-Adic differential equations and p-adic coefficients on curves
    Christol, G
    Mebkhout, Z
    ASTERISQUE, 2002, (279) : 125 - +
  • [37] P-adic Measures and P-adic Spaces of Continuous Functions
    Katsaras, A. K.
    NOTE DI MATEMATICA, 2010, 30 (01): : 61 - 85
  • [38] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [39] Simultaneous approximation problems of p-adic numbers and p-adic knapsack cryptosystems - Alice in p-adic numberland
    Inoue H.
    Kamada S.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 312 - 324
  • [40] A p-Adic Model of Quantum States and the p-Adic Qubit
    Aniello, Paolo
    Mancini, Stefano
    Parisi, Vincenzo
    ENTROPY, 2023, 25 (01)